

https://doi.org/10.1007/s11467-022-1244-4

RESEARCH ARTICLE

Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures

Yanyan Li¹, Mingjun Yang¹, Yanan Lu¹, Dan Cao², Xiaoshuang Chen³, Haibo Shu^{1,†}

¹ College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
² College of Science, China Jiliang University, Hangzhou 310018, China
³ National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China
Corresponding author. E-mail: [†]shuhaibo@cjlu.edu.cn
Received May 22, 2022; accepted September 5, 2022

Supporting Information

S1. Interfacial configurations and stabilities of 2D TMD/In₂X₃ VSHs

2D TMD/In₂X₃ VSHs were created by vertically stacking a 2×2 TMD monolayer on $\sqrt{3} \times \sqrt{3} \alpha$ -In₂X₃ nanosheets for the minimization of lattice mismatch. According to the polar-axis orientation (P_{down} and P_{up}), these VSHs can be divided into TMD/In₂X₃(\downarrow) and TMD/In₂X₃(\uparrow), respectively. The most stable interfacial configuration of each TMD/In₂X₃ VSH was determined by the energy comparison among various potential interfacial configurations. As shown in Fig. S5a and b, six interfacial configurations have been considered. Taking MoTe₂/1L-In₂Se₃ VSHs as an example, the energy comparison shows that A-configuration is the most stable one for MoTe₂/1L-In₂Se₃(\uparrow) VSH and C-configuration is the most stable one for MoTe₂/1L-In₂Se₃(\downarrow) VSH. The similar results have been found in other TMD/In₂X₃ VSHs. Based on the optimal interface configurations, the optimized lattice parameters and energetic data of MoTe₂/In₂Se₃ and MoSe₂/In₂S₃ VSHs are listed in Table S1 and Table S2, respectively.

Fig. S1 Interfacial configurations and energetics of 2D TMD/In₂X₃ (X = S, Se) VSHs. (a) Top view of atomic structures of MoTe₂/In₂Se₃ and MoSe₂/In₂S₃ VSHs. The shadow region indicates the unit cell range of these VSHs. (b) Six potential interfacial configurations (A-F) of TMD/In₂X₃ VSHs. (c) Relative energies of MoTe₂/1L-In₂Se₃(\uparrow) VSH with the configurations A-F. The total energy of the configuration A is used as a reference. (d) Relative energies of MoTe₂/1L-In₂Se₃(\downarrow) VSH with the configurations A-F. The total energy of the configuration C is used as a reference.

Table S1 Optimized in-plane lattice constant (*a*), interface distance (*d*), interfacial binding energies (γ_{int}), interface dipole moments (μ), and electrostatic potential difference ($\Delta\Phi$) of MoTe₂/In₂Se₃ VSHs. The thickness range of In₂Se₃ layer is considered from 1L to 4L. MoTe₂/In₂Se₃(\uparrow) and MoTe₂/In₂Se₃(\downarrow) denote the VHSs in P_{up} and P_{down} state, respectively.

Heterostructures	$MoTe_2/In_2Se_3(\uparrow)$				MoTe ₂ /In ₂ Se ₃ (\downarrow)			
	1L	2L	3L	4L	1L	2L	3L	4L
a (Å)	6.740	6.662	6.661	6.661	6.651	6.661	6.660	6.660
<i>d</i> (Å)	3.39	3.35	3.32	3.32	3.33	3.29	3.26	3.25
γ_{int} (J/m ²)	-0.19	-0.20	-0.25	-0.24	-0.20	-0.21	-0.26	-0.28
μ (Deby)	1.68	3.60	4.08	4.11	1.49	2.16	2.26	2.30
$\Delta \Phi (eV)$	1.50	3.16	3.92	3.98	1.25	1.81	1.92	1.94

Table S2 Optimized in-plane lattice constant (*a*), interface distance (*d*), interfacial binding energies (γ_{int}), interface dipole moments (μ), and electrostatic potential difference ($\Delta \Phi$) of MoSe₂/In₂S₃ VSHs. The thickness range of In₂S₃ layer is considered from 1L to 4L. MoSe₂/In₂S₃(\uparrow) and MoSe₂/In₂S₃(\downarrow) denote the VHSs in P_{up} and P_{down} state, respectively.

Heterostructures	$MoSe_2/In_2S_3(\uparrow)$				MoSe ₂ /In ₂ S ₃ (↓)			
	1L	2L	3L	4L	1L	2L	3L	4L
a (Å)	6.42	6.41	6.41	6.41	6.42	6.41	6.41	6.41
<i>d</i> (Å)	2.77	2.74	2.74	2.74	2.48	2.40	2.35	2.32
γ_{int} (J/m ²)	-0.15	-0.18	-0.19	-0.20	-0.28	-0.45	-0.66	-0.83
μ (Deby)	0.83	1.21	1.52	1.52	0.81	0.72	0.58	0.56
$\Delta \Phi$ (eV)	3.28	4.58	5.09	4.88	2.37	2.15	2.25	2.20

S2. Ferroelectric polarization effect on electrostatic potentials of 2D α-In₂X₃ nanosheets

Fig. S2 Average electrostatic potential distribution (Φ) of 2D α -In₂X₃ (X = S, Se) ferroelectrics with the thickness range from 1L to 4L. (**a-d**) The Φ of 2D α -In₂S₃ with the thickness range from 1L to 4L. (**e-h**) The Φ of 2D α -In₂Se₃ with the thickness range from 1L to 4L. (**e-h**) The Φ of 2D α -In₂Se₃ with the thickness range from 1L to 4L. The $\Delta\Phi$ denote the electrostatic potential difference between two surface terminations of the 2D α -In₂X₃ ferroelectrics. The arrows indicate the polarization direction. It can be seen that all considered 2D α -In₂X₃ nanosheets indicate asymmetric electrostatic potential distribution along the out-of-plane direction (or polarization direction), suggesting the existence of ferroelectric polarization field.

Fig. S3 Average electrostatic potential distribution (Φ) of 2D β -In₂Se₃ nanosheets with the layer thickness of (**a**) 1L, (**b**) 2L, and (**c**) 3L. The electrostatic potentials of all the β -In₂Se₃ nanosheets indicate symmetric distribution along the out-of-plane (or *z*-axis) direction. Irrespective of the layer thickness, the electrostatic potentials of β -In₂Se₃ nanosheets are symmetric along the out-of-plane direction. Therefore, there is no spontaneous polarization in these β -In₂Se₃ nanosheets.

Fig. S4 Thickness-dependent (a) $\Delta\Phi$ and (b) dipole moment (μ) in 2D α -In₂X₃ (X = S, Se) ferroelectrics. These data were obtained by the HSE06 functional. It can be seen that both the $\Delta\Phi$ and μ values of these α -In₂X₃ ferroelectrics can be gradually saturated with the increase of layer thickness.

S3. Band structures of 2D In₂X₃ nanosheets

Fig. S5 Band structures of 2D In_2X_3 (X = S, Se) nanosheets calculated by the HSE06 functional. (**a-c**) Projected band structures of α -In₂S₃ ferroelectrics with the thickness range from 1L to 3L. (**d-f**) Projected band structures of α -In₂Se₃ ferroelectrics with the thickness range from 1L to 3L. The blue, green, and red bands are contributed by the top-layer, middle-layer, and bottom-layer In₂X₃ along the polarization direction, respectively. (**g-i**) Band structures of 2D β -In₂Se₃ nanosheets with the thickness range from 1L to 3L. The dash lines denote the position of Fermi level. There is no layer-by-layer band shift in band structures of β -In₂Se₃ nanosheets due to the lack of ferroelectric polarization field.

S4. Thickness effect on projected band structures of MoTe₂/In₂Se₃ VSHs

Fig. S6 Projected band structures of MoTe₂/In₂Se₃ VSHs with different In₂Se₃ layer thicknesses in P_{up} and P_{down} states calculated by the PBE functional. (**a**, **b**) Projected band structures of MoTe₂/In₂Se₃(\uparrow) VSHs with (a) 3L-In₂Se₃ and (b) 4L-In₂Se₃. (**c**, **d**) Projected band structures of MoTe₂/In₂Se₃(\downarrow) VSHs with (c) 3L-In₂Se₃ and (d) 4L-In₂Se₃. The red and blue bands denote the contribution from the In₂Se₃ and MoTe₂ layers, respectively. The black dash lines denote the position of Fermi level. When the thickness of In₂Se₃ layer arrives at 3L, the further increase of In₂Se₃ layer will bring few changes of band-edge electronic states in the VSHs. More specifically, the MoTe₂/In₂Se₃(\uparrow) VSHs exhibit metallic characteristic and their band-edge electronic states around the Fermi level are contributed by the In₂Se₃ layer. This originates from the formation of self-doped p-n junctions in the In₂Se₃ layer from 3L to 4L. For the MoTe₂/In₂Se₃(\downarrow) VSHs, the CBM state contributed by the In₂Se₃ layer from 3L to 4L. For the MoTe₂/In₂Se₃(\downarrow) VSHs, the Self-doping characteristic of MoTe₂/In₂Se₃(\downarrow) VSHs is also not sensitive to the thickness change of In₂Se₃ layer from 3L to 4L. For the MoTe₂/In₂Se₃(\downarrow) VSHs, the CBM state contributed by the In₂Se₃ layer.

S5. Band alignments of MoSe₂/In₂S₃ VSHs

Fig. S7 Band alignments of 2D MoSe₂/In₂S₃(\uparrow) VSHs with the thickness range of In₂S₃ layer from 1L to 3L. (**a-c**) Projected band structure and DOS of VSH with (a) 1L-In₂S₃, (b) 2L-In₂S₃, and (c) 3L-In₂S₃. The red and blue bands denote the contribution from In₂S₃ and MoSe₂ layers, respectively. The horizontal dash lines denote the position of Fermi level. T-In₂S₃, M-In₂S, and B-In₂S₃ represent the top-layer, middle-layer, and bottom-layer In₂S₃ in the VSHs, respectively. (**d**) Schematic of band alignments of MoSe₂/In₂S₃(\uparrow) VSHs. The black and gray arrows denote the carrier transport direction and polarization direction, respectively.

Fig. S8 Band alignments of 2D MoSe₂/In₂S₃(\downarrow) VSHs with the thickness range of In₂Se₃ layer from 1L to 3L. (**ac**) Projected band structure and DOS of VSH with (a) 1L-In₂S₃, (b) 2L-In₂S₃, and (c) 3L-In₂S₃. The red and blue bands represent the contribution of In₂S₃ and MoSe₂ layers, respectively. The horizontal dash lines denote the position of Fermi level. T-In₂S₃, M-In₂S₃, and B-In₂S₃ represent the top-layer, middle-layer, and bottom-layer In₂S₃ in the VSHs, respectively. (**d**) Schematic of band alignments of MoSe₂/In₂S₃(\downarrow) VSHs. The arrows indicate the polarization direction.

S6. FE phase transition driven evolution of band-edge states in MoTe₂/In₂Se₃ VSH

Fig. S9 Ferroelectric phase transition driven band-edge-position evolution of (**a**) In₂Se₃ layer and (**b**) MoTe₂ layer in MoTe₂/3L-In₂Se₃ VSH. The filled and unfilled points denote the conduction-band and valence -band data, respectively. The red, green, and blue points represent the data of T-In₂Se₃, M-In₂Se₃, and B-In₂Se₃, respectively.