Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2013, Vol. 7 Issue (3): 304-315   https://doi.org/10.1007/s11709-013-0213-y
  RESEARCH ARTICLE 本期目录
Two-scale modeling of granular materials: A FEM-FEM approach
Two-scale modeling of granular materials: A FEM-FEM approach
Yun-Zhu CAI, Yu-Ching WU()
Building Engineering Department, College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1247 KB)   HTML
Abstract

In the present paper, a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies. The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level, and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level. The link between scales is made using a computational homogenization method. The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element, kinematic conditions, contact constraints, and elimination of overlap satisfied for every particle. The method could be used in a variety of problems that can be represented using granular media.

Key wordshomogenization    two-scale    representative volume element    compaction    granular assembly    finite element method
收稿日期: 2013-03-16      出版日期: 2013-09-05
Corresponding Author(s): WU Yu-Ching,Email:ycwu@tongji.edu.cn   
 引用本文:   
. Two-scale modeling of granular materials: A FEM-FEM approach[J]. Frontiers of Structural and Civil Engineering, 2013, 7(3): 304-315.
Yun-Zhu CAI, Yu-Ching WU. Two-scale modeling of granular materials: A FEM-FEM approach. Front Struc Civil Eng, 2013, 7(3): 304-315.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-013-0213-y
https://academic.hep.com.cn/fsce/CN/Y2013/V7/I3/304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 Caglioti E, Loreto V, Herrmann H J, Nicodemi M. A tetris-like model for the compaction of dry granular media. Physical Review Letters , 1997, 79(8): 1575-1578
doi: 10.1103/PhysRevLett.79.1575
2 Ribière PPhilippeP, Richard P, Delannay R, Bideau D. Slow compaction of granular system. Journal of Physics Condensed Matter , 2005, 17(24): S2743-S2754
doi: 10.1088/0953-8984/17/24/024
3 Forgerini F L, Figueiredo W. Random deposition of particles of different sizes. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2009, 79(4): 041602
doi: 10.1103/PhysRevE.79.041602
4 Cates M E, Wittmer J P, Bouchaud J P, Claudin P. Jamming, force chains, and fragile matter. Physical Review Letters , 1998, 81(9): 1841-1844
doi: 10.1103/PhysRevLett.81.1841
5 Dintwa E, van Zeebroeck M, Tijskens E, Ramon H. Torsional stiffness of viscoelastic spheres in contact. European Physical Journal B , 2004, 39(1): 77-85
doi: 10.1140/epjb/e2004-00173-2
6 Bartels G, Unger T, Kadau D, Wolf D E, Kertesz J. The effect of contact torques on porosity of cohesive powders. Granular Matter , 2005, 7(2-3): 139-143
doi: 10.1007/s10035-004-0184-8
7 Hu W, Jin F, Zhang C, Wang J. 3D mode discrete element method with the elastoplastic model. Frontiers of Structural and Civil Engineering , 2012, 6(1): 57-68
8 Lei Yang L, Jiang Y, Li B, Li S, Yang Gao Y. Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression. Frontiers of Structural and Civil Engineering , 2012, 6(2): 121-131
9 Ludewig F, Vandewalle N, Dorbolo S. Compaction of granular mixtures. Granular Matter , 2006, 8(2): 87-91
doi: 10.1007/s10035-005-0223-0
10 Uematsu K, Kim J Y, Miyashita M, Uchida N, Saito K. Direct observation of internal structure in spray-dried alumina granules. Journal of the American Ceramic Society , 1990, 73(8): 2555-2557
doi: 10.1111/j.1151-2916.1990.tb07635.x
11 Uematsu K, Miyashita M, Kim J Y, Kato Z, Uchida N. Effect of forming pressure on the internal structure of alumina green bodies examined with immersion liquid technique. Journal of the American Ceramic Society , 1991, 74(9): 2170-2174
doi: 10.1111/j.1151-2916.1991.tb08278.x
12 DuránP, Moure CJurado J R. Sintering and micro-structural development of ceria-gadolinia dispersed powders. Journal of Materials Science , 1994, 29(7): 1940-1948
doi: 10.1007/BF00351318
13 Zhang Y, Uchida N, Uematsu K. Direct observation of non-uniform distribution of PVA binder in alumina green body. Journal of Materials Science , 1995, 30(5): 1357-1360
doi: 10.1007/BF00356144
14 Naito M, Nakahira K, Hotta T, Ito A, Yokoyama T, Kamiya H. Microscopic analysis on the consolidation process of granule beds. Powder Technology , 1998, 95(3): 214-219
doi: 10.1016/S0032-5910(97)03340-8
15 ,Cuiti?o A M, Alvarez M CRoddy M J, Lordi N G. Experimental characterization of the behavior of granular visco-plastic and visco-elastic solids during compaction. Journal of Materials Science , 2001, 36(22): 5487-5495
doi: 10.1023/A:1012450221092
16 Wu Y C, Thompson E G, Heyliger P R. The compaction of aggregates of non-spherical linear viscous particles. Computer Methods in Applied Mechanics and Engineering , 2003, 192(44-46): 4929-4946
doi: 10.1016/S0045-7825(03)00398-0
17 Wu Y C, Thompson E G, Heyliger P R, Yao Z H. The compaction of blended aggregates of non-spherical linear viscous particles. Computer Methods in Applied Mechanics and Engineering , 2004, 193(36-38): 3871-3890
doi: 10.1016/j.cma.2004.02.008
18 Wu Y C. Automatic adaptive mesh upgrade schemes of the step-by-step incremental simulation for quasi linear visco-plastic granular materials. Computer Methods in Applied Mechanics and Engineering , 2008, 197(17-18): 1479-1494
doi: 10.1016/j.cma.2007.11.020
19 Wu Y, Xiao J, Zhu C. The compaction of time-dependent viscous granular materials considering inertial forces. Acta Mechanica Solida Sinica , 2011, 24(6): 495-505
20 Hughes T J R, Feijoo G R, Mazzei L, Quincy J B. The variational multi-scale method—a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering , 1998, 166(1-2): 3-24
doi: 10.1016/S0045-7825(98)00079-6
21 Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics , 2003, 190(1): 249-274
doi: 10.1016/S0021-9991(03)00273-0
22 Park H S, Liu W K. An introduction and tutorial on multiple-scale analysis in solids. Computer Methods in Applied Mechanics and Engineering , 2004, 193(17-20): 1733-1772
doi: 10.1016/j.cma.2003.12.054
23 Kadowaki H, Liu W K. Bridging multi-scale method for localization problems. Computer Methods in Applied Mechanics and Engineering , 2004, 193(30-32): 3267-3302
doi: 10.1016/j.cma.2003.11.014
24 Guennouni T, Francois D. Constitutive equations for rigid plastic or viscoplastic materials containing voids. Fatigue and Fracture of Engineering Materials and Structures , 1987, 10(5): 399-418
doi: 10.1111/j.1460-2695.1987.tb00489.x
25 G?r?jeu M, Suquet P. Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. Journal of the Mechanics and Physics of Solids , 1997, 45(6): 873-902
doi: 10.1016/S0022-5096(96)00128-7
26 Danas K, Idiart M I, Castaneda P P. A homogenization-based constitutive model for isotropic viscoplastic porous media. International Journal of Solids and Structures , 2008, 45(11-12): 3392-3409
doi: 10.1016/j.ijsolstr.2008.02.007
27 Miehe C, Dettmar J, Zah D. Homogenization and two-scale simulations of granular materials for different micro-structural constraints. International Journal for Numerical Methods in Engineering , 2010, 83(8-9): 1206-1236
doi: 10.1002/nme.2875
28 Nitka M, Combe G, Dascalu C, Desrues J. Two-scale modeling of granular materials: A DEM-FEM approach. Granular Matter , 2011, 13(3): 277-281
doi: 10.1007/s10035-011-0255-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed