Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (4): 405-419   https://doi.org/10.1007/s11709-015-0310-1
  本期目录
Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method
Hanjie ZHANG1,2,Junzhao WU1,2,Dongdong WANG1,2,*()
1. Department of Civil Engineering, Xiamen University, Xiamen 361005, China
2. Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen 361005, China
 全文: PDF(4131 KB)   HTML
Abstract

The free vibration analysis of cracked thin plates via a quasi-convex coupled isogeometric-meshfree method is presented. This formulation employs the consistently coupled isogeometric-meshfree strategy where a mixed basis vector of the convex B-splines is used to impose the consistency conditions throughout the whole problem domain. Meanwhile, the rigid body modes related to the mixed basis vector and reproducing conditions are also discussed. The mixed basis vector simultaneously offers the consistent isogeometric-meshfree coupling in the coupled region and the quasi-convex property for the meshfree shape functions in the meshfree region, which is particularly attractive for the vibration analysis. The quasi-convex meshfree shape functions mimic the isogeometric basis function as well as offer the meshfree nodal arrangement flexibility. Subsequently, this approach is exploited to study the free vibration analysis of cracked plates, in which the plate geometry is exactly represented by the isogeometric basis functions, while the cracks are discretized by meshfree nodes and highly smoothing approximation is invoked in the rest of the problem domain. The efficacy of the present method is illustrated through several numerical examples.

Key wordsmeshfree method    isogeometric analysis    quasi-convex isogeometric-meshfree method    free vibration    cracked thin plate
收稿日期: 2015-03-24      出版日期: 2015-11-26
Corresponding Author(s): Dongdong WANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(4): 405-419.
Hanjie ZHANG,Junzhao WU,Dongdong WANG. Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Front. Struct. Civ. Eng., 2015, 9(4): 405-419.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0310-1
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I4/405
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
mode No. number of DOF reference results
304 321 346 379
1(S) 48.86 48.88 48.91 48.95 48.95
2(S) 77.54 77.59 77.68 77.86 77.87
3(S) 126.0 126.1 126.3 126.7 126.6
4(A) 166.4 166.6 166.8 167.1 167.1
5(A) 190.8 191.7 192.2 192.9 194.0
6(A) 232.2 233.4 234.3 235.8 237.9
Tab.1  
Fig.7  
Fig.8  
mode no. number of DOF reference results
310 327 352 385
1(S) 39.18 39.69 39.91 40.37 40.37
2(S) 68.43 70.21 71.50 72.64 72.79
3(A) 72.58 72.63 72.67 73.34 73.63
4(S) 123.0 123.1 123.2 123.2 123.4
5(A) 164.2 166.9 167.6 167.5 168.6
6(A) 194.2 195.9 197.1 199.2 198.1
Tab.2  
Fig.9  
Fig.10  
mode No. number of DOF reference results
316 333 358 391
1(S) 29.10 29.49 29.66 29.89 29.90
2(A) 37.90 38.45 38.95 39.51 39.53
3(S) 67.38 67.71 67.99 68.01 68.20
4(A) 90.45 91.97 93.41 95.35 94.50
5(S) 119.9 120.0 120.8 120.8 120.2
6(A) 160.9 164.0 166.7 169.3 166.4
Tab.3  
Fig.11  
Fig.12  
mode No. number of DOF reference results
536 570 620
1(S) 18.10 18.20 18.28 18.28
2(A) 45.34 45.65 45.84 46.62
3(S) 48.94 49.00 49.02 49.03
4(A) 78.36 78.39 78.41 78.60
5(S) 83.47 84.51 84.96 85.51
6(S) 98.56 98.64 98.65 98.68
Tab.4  
Fig.13  
Fig.14  
mode No. number of DOF reference results
536 570 620
1(S) 16.23 16.34 16.40 16.40
2(A) 24.48 26.22 26.71 27.77
3(S) 46.99 47.12 47.23 47.26
4(A) 60.57 63.47 64.39 65.73
5(S) 75.64 76.12 76.36 76.37
6(A) 77.19 77.81 77.96 78.38
Tab.5  
Fig.15  
Fig.16  
Fig.17  
mode No. number of DOF reference results
305 322 347
1(S) 10.79 10.81 10.82 10.82
2(A) 12.89 12.89 12.91 12.93
3(S) 16.41 16.43 16.50 16.48
4(A) 21.32 21.34 21.48 21.47
5(S) 27.42 27.52 27.87 27.56
6(A) 34.90 34.90 35.56 35.06
Tab.6  
Fig.18  
1 Lynn  P P, Kumbasar  N. Free vibration of thin rectangular plates having narrow cracks with simply supported edges. Developments in Mechanics, 1967, 4: 911–928
2 Stahl  B, Keer  L M. Vibration and stability of cracked rectangular plates. International Journal of Solids and Structures, 1972, 8(1): 69–91
3 Nezu  K. Free vibration of a simply-supported rectangular plate with a straight through-notch. Bulletin of the Japan Society of Mechanical Engineers, 1982, 25(199): 16–23
4 Solecki  R. Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Engineering Fracture Mechanics, 1983, 18(6): 1111–1118
5 Hirano  Y, Okazaki  K. Vibration of cracked rectangular plates. Bulletin of the Japan Society of Mechanical Engineers, 1980, 23(179): 732–740
6 Leissa  A W, McGee  O G, Huang  C S. Vibration of circular plates having V-notches or sharp radial cracks. Journal of Sound and Vibration, 1993, 161(2): 227–239
7 Liew  K M, Hung  K C, Lim  M K. A solution method for analysis of cracked plates under vibration. Engineering Fracture Mechanics, 1994, 48(3): 393–404
8 Huang  C S, Leissa  A W. Vibration analysis of rectangular plates with side cracks via the Ritz method. Journal of Sound and Vibration, 2009, 323(3−5): 974–988
9 Zienkiewicz  O C, Taylor  R L. The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, 2005
10 Belytschko  T, Lu  Y Y, Gu  L. Element-free Gakerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256
11 Liu  W K, Jun  S, Zhang  Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8−9): 1081–1106
12 Sukumar  N. Construction of polygonal interpolants: a maximum entropy approach. International Journal for Numerical Methods in Engineering, 2004, 61(12): 2159–2181
13 Arroyo  M, Ortiz  M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202
14 Rabczuk  T, Samaniego  E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6): 641–658
15 Chen  J S, Chi  S W, Hu  H Y. Recent developments in stabilized Galerkin and collocation meshfree methods. Computer Assisted Mechanics and Engineering Sciences, 2011, 18: 3–21
16 Wang  D, Chen  P. Quasi-convex reproducing kernel meshfree method. Computational Mechanics, 2014, 54(3): 689–709
17 Kwok  O L A, Guan  P C, Cheng  W P, Sun  C T. Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation. KSCE Journal of Civil Engineering, 2015, 19(1): 107–115
18 Hughes  T J R, Cottrell  J A, Bazilevs  Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39−41): 4135–4195
19 Cottrell  J A, Hughes  T J R, Reali  A. Studies of refinement and continuity in isogeometric structural analysis. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41): 4160–4183
20 De Luycker  E, Benson  D J, Belytschko  T, Bazilevs  Y, Hsu  M C. X‐FEM in isogeometric analysis for linear fracture mechanics. International Journal for Numerical Methods in Engineering, 2011, 87(6): 541–565
21 Bazilevs  Y, Hsu  M C, Scott  M A. Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 2012, 249: 28–41
22 Wang  D, Liu  W, Zhang  H. Novel higher order mass matrices for isogeometric structural vibration analysis. Computer Methods in Applied Mechanics and Engineering, 2013, 260: 92–108
23 Thai  C H, Nguyen-Xuan  H, Bordas  S P A, Nguyen-Thanh  N, Rabczuk  T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2014, 22(6): 451–469
24 Elguedj  T, Hughes  T J R. Isogeometric analysis of nearly incompressible large strain plasticity. Computer Methods in Applied Mechanics and Engineering, 2014, 288: 388–416
25 Zuo  B Q, Huang  Z D, Wang  Y W, Wu  Z J. Isogeometric analysis for CSG models. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 102–124
26 Wang  D, Xuan  J. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37−40): 2425–2436
27 Krysl  P, Belytschko  T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, 1995, 16: 1–10
28 Krysl  P, Belytschko  T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, 1995, 16: 1–10
29 Li  S, Lu  H, Han  W, Liu  W K, Simkins  D C. Reproducing kernel element method, Part II. Global conforming Im/Cn. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12−14): 953–987
30 Rabczuk  T, Areias  P M A, Belytschko  T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
31 Wang  D, Peng  H. A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Computational Mechanics, 2013, 51(6): 1013–1029
32 Kiendl  J, Bletzinger  K U, Linhard  J, Wüchner  R. Isogeometric shell analysis with Kirchhoff−Love elements. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49): 3902–3914
33 Zhang  H, Wang  D, Xuan  J. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates. Chinese Quarterly of Mechanics, 2010, 31: 469–477
34 Benson  D J, Bazilevs  Y, Hsu  M C, Hughes  T J R. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13): 1367–1378
35 Nguyen-Thanh  N, Kiendl  J, Nguyen-Xuan  H, Wüchner  R, Bletzinger  K U, Bazilevs  Y, Rabczuk  T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3410–3424
36 Shojaee  S, Izadpanah  E, Valizadeh  N, Kiendl  J. Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elements in Analysis and Design, 2012, 61: 23–34
37 Echter  R, Oesterle  B, Bischoff  M. A hierarchic family of isogeometric shell finite elements. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 170–180
38 Wang  D, Liu  W, Zhang  H. Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 230–267
39 Organ  D, Fleming  M, Terry  T, Belytschko  T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational Mechanics, 1996, 18(3): 225–235
40 Belytschko  T, Fleming  M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers & Structures, 1999, 71(2): 173–195
41 Rabczuk  T, Belytschko  T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
42 De Luycker  E, Benson  D J, Belytschko  T, Bazilevs  Y, Hsu  M C. X-FEM in isogeometric analysis for linear fracture mechanics. International Journal for Numerical Methods in Engineering, 2011, 87(6): 541–565
43 Ghorashi  S S, Valizadeh  N, Mohammadi  S. Extended isogeometric analysis for simulation of stationary and propagating cracks. International Journal for Numerical Methods in Engineering, 2012, 89(9): 1069–1101
44 Ghorashi  S S, Valizadeh  N, Mohammadi  S, Rabczuk  T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
45 Tran  L V, Nguyan  V P, Wahab  M A, Nguyan-Xuan  H. An extended isogeometric analysis for vibration of cracked FGM plates using higher-order shear deformation theory, arXiv preprint arXiv:1403.0306, 2014
46 Nguyen-Thanh  N, Valizadeh  N, Nguyen  M N, Nguyen-Xuan  H, Zhuang  X, Areias  P, Zi  G, Bazilevs  Y, De Lorenzis  L, Rabczuk  T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
47 Zhang  H, Wang  D. An isogeometric enriched quasi-convex meshfree formulation with application to material interface modeling. Engineering Analysis with Boundary Elements, 2015, 60: 37–50
48 Wang  D, Zhang  H. A consistently coupled isogeometric-meshfree method. Computer Methods in Applied Mechanics and Engineering, 2014, 268: 843–870
49 Zhang  H, Wang  D, Liu  W. Isogeometric-meshfree coupled analysis of Kirchhoff plates. Advances in Structural Engineering, 2014, 17(8): 1159–1176
50 Marsden  M J. An identity for spline functions with applications to variation-diminishing spline approximation. Journal of Approximation Theory, 1970, 3(1): 7–49
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed