Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2016, Vol. 10 Issue (1): 93-102   https://doi.org/10.1007/s11709-015-0311-0
  本期目录
Improvement of aerodynamic stability of suspension bridges with H-shaped simplified stiffening girder
Hiroshi KATSUCHI(),Hitoshi YAMADA,Mayuko NISHIO,Yoko OKAZAKI
Department of Civil Engineering, Yokohama National University, Yokohama, 240-8501, Japan
 全文: PDF(1558 KB)   HTML
Abstract

Wind-tunnel study on the improvement of aerodynamic stability of simplified suspension-bridge girder structures was conducted with using a 1/40-scaled section model. Objective of the study is the development of an economically superior suspension bridge with 500–1,000 m center span length. The wind-tunnel test showed that an edge-girder type cross section exhibited large amplitude torsional vortex-induced vibration as well as torsional flutter at a low wind speed. Accordingly, aerodynamic countermeasures of open grating deck and triangular faring, and structural countermeasures of center stay, diagonal bracing and mass increase were tried to improve the aerodynamic stability. Finally, feasibility of the best combination to a full-scale bridge was examined by structural analysis.

Key wordssuspension bridge    aerodynamics    simplified girder    wind-tunnel test
收稿日期: 2014-10-30      出版日期: 2016-01-19
Corresponding Author(s): Hiroshi KATSUCHI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2016, 10(1): 93-102.
Hiroshi KATSUCHI,Hitoshi YAMADA,Mayuko NISHIO,Yoko OKAZAKI. Improvement of aerodynamic stability of suspension bridges with H-shaped simplified stiffening girder. Front. Struct. Civ. Eng., 2016, 10(1): 93-102.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0311-0
https://academic.hep.com.cn/fsce/CN/Y2016/V10/I1/93
Fig.1  
Fig.2  
No. hanger interval /m No. of girder beam deck type girder weight /(kN·m−1) tension of main cables /kN area of main cable/m2 unit weight of suspended structure/(kN·m−1)
1 10 2 I-beam grid RC 165.3 2.18 × 105 0.185 194.5
2 3 RC 171.5 2.24 × 105 0.190 202.2
3 I-beam grid RC 122.7 1.83 × 105 0.155 147.1
4 6 RC 132.8 1.91 × 105 0.160 158.1
5 I-beam grid RC 118.9 1.81 × 105 0.155 143.4
6 steel grating 39.4 1.15 × 105 0.100 55.2
7 15 2 I-beam grid RC 164.0 2.18 × 105 0.185 193.3
8 3 RC 172.1 2.24 × 105 0.190 202.1
9 I-beam grid RC 123.9 1.84 × 105 0.155 148.4
10 6 RC 139.0 1.97 × 105 0.165 165.1
11 I-beam grid RC 127.7 1.88 × 105 0.160 152.9
12 steel grating 40.7 1.16 × 105 0.100 56.5
13 20 2 I-beam grid RC 166.5 2.19 × 105 0.185 195.8
14 3 RC 177.7 2.29 × 105 0.195 208.5
15 I-beam grid RC 127.7 1.88 × 105 0.160 152.9
16 6 RC 144.0 2.01 × 105 0.170 170.9
17 I-beam grid RC 133.9 1.93 × 105 0.165 160.0
18 steel grating 49.4 1.23 × 105 0.105 66.0
Tab.1  
Fig.3  
No. type of model(hanger interval- girder number- deck type) 1SV/Hz 1AV/Hz 1ST/Hz 1AT/Hz
1 10 − 2 − I 0.229 0.172 0.413 0.309
2 10 − 3 − RC 0.226 0.169 0.412 0.314
3 10 − 3 − I 0.258 0.197 0.435 0.331
4 10 − 6 − RC 0.250 0.190 0.432 0.324
5 10 − 6 − I 0.261 0.199 0.443 0.332
6 10 − 6 − G 0.362 0.288 0.650 0.497
7 15 − 2 − I 0.233 0.189 0.414 0.339
8 15 − 3 − RC 0.229 0.185 0.409 0.337
9 15 − 3 − I 0.258 0.214 0.436 0.361
10 15 − 6 − RC 0.246 0.203 0.423 0.346
11 15 − 6 − I 0.253 0.210 0.431 0.351
12 15 − 6 − G 0.381 0.339 0.643 0.541
13 20 − 2 − I 0.242 0.175 0.428 0.322
14 20 − 3 − RC 0.239 0.171 0.415 0.317
15 20 − 3 − I 0.266 0.196 0.434 0.334
16 20 − 6 − RC 0.251 0.185 0.426 0.317
17 20 − 6 − I 0.256 0.190 0.429 0.319
18 20 − 6 − G 0.362 0.288 0.608 0.465
Tab.2  
Fig.4  
Fig.5  
Fig.6  
No. unit weight of suspended structure (kN/m) deck faring (aerodynamic countermeasures)
1 62.5 grating none
2 Faring A
3 Faring B
4 solid none
5 Faring A
6 Faring B
7 Faring C
8 125.1 grating none
9 Faring A
10 Faring B
11 solid none
12 Faring A
13 Faring B
14 Faring C
15 187.6 grating none
16 Faring A
17 Faring C
18 solid none
19 Faring A
20 Faring C
Tab.3  
proto type model
deck width B/m 13.5 0.3375
girder height D/m 1.0 0.025
massm/(kg·m−1) Cases 1−7 6.38 × 103 3.99
Cases 8−14 12.76 × 103 7.98
Cases 15−20 19.14 × 103 11.96
polar moment of inertiaI/(kg m2/m) Cases 1−7 113.4 × 103 0.0443
Cases 8−14 226.8 × 103 0.0886
Cases 15−20 340.2 × 103 0.1329
natural frequency f/Hz vertical Cases 1−7 0.325 2.01
Cases 8−14 0.231 1.48
Cases 15−20 0.189 1.26
torsion Cases 1−7 0.493 4.02
Cases 8−14 0.350 3.50
Cases 15−20 0.289 2.81
structural damping δ vertical 0.02 in log. dec. 0.020 − 0.021
torsion 0.02 in log. dec. 0.010 − 0.012
Tab.4  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
natural frequency/Hz
1ST 1AT 1ST 1AT 1ST 1AT
base model 0.412 0.336
diagonal bracing upper bracing 0.415 0.343
middle bracing 0.415 0.361
below bracing 0.461 0.458
diagonal bracing+ stay cable D = 6.8 cm D = 9.6 cm D = 11.8 cm
two stays upper bracing 0.415 0.363 0.415 0.367 0.415 0.369
middle bracing 0.415 0.373 0.415 0.376 0.414 0.378
below bracing 0.460 0.469 0.460 0.472 0.460 0.474
four stays upper bracing 0.417 0.377 0.417 0.384 0.416 0.387
middle bracing 0.416 0.384 0.416 0.388 0.416 0.391
below bracing 0.461 0.478 0.461 0.483 0.461 0.485
Tab.5  
Fig.14  
1 Farquharson  F B. Part III: The investigation of models of the original Tacoma Narrows Bridge under the action of wind. Aerodynamic Stability of Suspension Bridges with Special Reference to the Tacoma Narrows Bridge. Bulletin No. 116, University of Washington, 1952
2 Irwin  P. Wind tunnel tests of long span bridges. In: Proceedings of the 12th Congress IABSE. Vancouver, 1984, 689–696
3 Yokoyama  K, Kusakabe  T, Wakasa  T, Oba  N. A feasibility study of new type cable-stayed bridge consists of steel main girder and RC slab. Journal of Structural Engineering, JSCE, 1992, 38A: 1153–1160 
4 Sakai  Y, Ogawa  K, Shimodoi  H, Saito  T. An experimental study on aerodynamic improvements for edge girder bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 459–466, 1993
5 Ito  S, Osako  S, Miyazaki  M, Saito  Y. Experimental study on aerodynamics characteristics of grating deck for super-long span suspension bridge. In: Proceedings of the 55th Annual Meeting. JSCE, 2000, 44–45, 2000 (in Japanese)
6 Sadashima  K, Kubu  Y, Koga  T, Okamoto  Y, Yamaguchi  E, Kato  K. Aeroelastic responses of 2-edge girder for cable-stayed bridges. Journal of Structural Engineering, 2002, 46A: 1073–1078 (in Japanese)
7 Murakami  T, Takeda  K, Takao  M, Yui  R, Investigation on aerodynamic and structural countermeasures for cable-stayed bridge with 2-edge I-shaped girder. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 2143–2151
8 Katsuchi  H, Yamada  H, Ohashi  H. A study on aerodynamic characteristics of edge-girder deck of composite cable-stayed bridge. Journal of Wind Engineering, 2010, 34(1): 103–110
9 Yamazaki  S, Yamada  H, Katsuchi, H, Shiotsuki  K. Study on simplification of girder structure in suspension bridge using H-shaped steel. Journal of Structural Engineering, 2013, 59A: 596–604
10 Katsuchi  H, Yamada  H, Yamazaki  S. Study on simplification of girder structure in suspension bridge. In: Proceedings of the 13th East Asia-pacific Conference on Structural Engineering and Construction. C-2-2, Sapporo, Japan, 2013, 9
11 Watanabe  A, Furuya  K, Wada  N, Fukaya  S, Ueda  T. Section-model wind-tunnel test for open-grating deck of Toyoshima Bridge. In: Proceedings of the 55th Annual Meeting. JSCE, 2000, 112–113 (in Japanese)
12 Japan Road Association. Design Specification for road Bridges, 2014 (in Japanese)
13 Honshu-shikoku Bridge Authority. Wind-tunnel Test Manual of Akashi Kaikyo Bridge, 1990 (in Japanese)
14 Sadashima  K, Kubo  Y, Okamoto  Y, Fukaumi  M. Fundamental study on wind-response characteristics of full open grating girder. In: Proceedings of the 55th Annual Convention of JSCE.<?Pub Caret?> I-B023, 2000, 9 (in Japanese)
15 Watanabe  K, Furuya  K, Wada  N, Fukaya  S, Ueda  T. Section-model wind-tunnel test of open grating girder of Toyoshima Bridge. In: Proceedings of the 55th Annual Convention of JSCE. I-B056, 2000, 9(in Japanese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed