Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (4): 397-404   https://doi.org/10.1007/s11709-015-0321-y
  本期目录
Mixed mode properties of CNT reinforced composites using Arcan test rig
Jacob MUTHU()
DST-NRF Centre of Excellence in Strong Materials and RP/Composite Facility, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa
 全文: PDF(2409 KB)   HTML
Abstract

Composite materials reinforced with carbon nanotubes were mechanical tested using Arcan test rig under Mode-I, Mode-II and mixed mode loading conditions to obtain their fracture properties. The butterfly composite specimens were fabricated with 0.02, 0.05 and 0.1 wt % CNTs. The polyester/CNT composite was fabricated using VRTM (Vacuum Resin Transfer Molding) where the CNTs were first functionalised to reach an optimum properties. Arcan test rig was designed and fabricated to work with the Shimadzu testing machine. The results show that the functionalised CNTs have improved the fracture behavior by acting as bridge between the cracked face. In addition, the fracture properties were not improved for the higher weight fraction of 0.1 wt% CNTs.

Key wordsCNT    composites    Arcan test rig    stress intensity factor
收稿日期: 2015-04-29      出版日期: 2015-11-26
Corresponding Author(s): Jacob MUTHU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(4): 397-404.
Jacob MUTHU. Mixed mode properties of CNT reinforced composites using Arcan test rig. Front. Struct. Civ. Eng., 2015, 9(4): 397-404.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0321-y
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I4/397
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
crack length, mm 3 6 9
CNT, wt% 0.02 0.05 0.1 0.02 0.05 0.1 0.02 0.05 0.1
KI, MPa·mm1/2 20 28 34 26 38 42 38 60 74
KII, MPa·mm1/2 10 12 18 16 20 24 22 26 32
Tab.1  
Fig.12  
1 Muthu  J, Dendere  C. Functionalized multiwall carbon nanotubes strengthen GRP hybrid composite: Improved properties with optimum fibre content. Composite Part B, 2014, 67: 84–94
2 Jacob Muthu  S D, Paskaramoorthy  R. Double-Wall Carbon Nanotube-Reinforced Polyester Nanocomposites: Improved Dispersion and Mechanical Properties. Polymer Composites, 2012, 33(6): 866–872
3 Karapappas  P, Vavouliotis  A, Tsotra  P, Kostopoulos  V, Paipetis  A. Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-Wall Carbon Nanotubes. Journal of Composite Materials, 2009, 43(9): 977–985
4 Wilkins  D J, Eisenmann  J R, Camin  R A, Margolis  W S, Benson  R A. Characterizing Delamination Growth in Graphite-Epoxy. Damage in Composite Materials, ASTM STP 775, K. L. Reifsnider, ed. American Society for Testing and Materials, Philadelphia, 1982, 168–183
5 American Society for Testing and Materials. Standard E399−06, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials. Annual Book of ASTM Standards. Philadelphia: ASTM, 2007
6 Russell  A J. On the Measurement of Mode II Interlaminar Fracture Energies, DREP Materials Report. 82−0, Defence Research Establishment Pacific, Victoria, December, 1982
7 O'Brien  T K. Mixed-Mode Strain-Energy-Release Rate Effects on Edge Delamination of Composites, Effects of Defects in Composite Materials, ASTM STP 836, D. J. Wilkins, ed. American Society for Testing and Materials, Philadelphia, 1984, 125–142
8 Wolfenden  A, Johnson  W S. Stress analysis of the crack-lap-shear specimen: An ASTM round-robin. Journal of Testing and Evaluation, JTEVA, 1987, 15(6): 303–324
9 Banks-Sills  L, Arcan  M, Gabay  H. A mode II fracture specimen-finite element analysis. Engineering Fracture Mechanics, 1984, 19(4): 739–750
10 El-Hajjar  R, Haj-Ali  R, 0. Rami Haj-Ali. In-plane shear testing of thick-section pultruded FRP composites using a modified Arcan fixture. Composite Part B, 2004, 35(5): 421–428
11 ASTM E399. Standard Test Method for Plane Strain Fracture Toughness and Strain Energy Release Rate of Metalic Materials: Annual Book of ASTM Standards, 1983
12 ASTM D5045. Standard Test Method for Plane Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials: Annual Book of ASTM Standards, 1995
13 Ayatollahi  M R, Shadlou  S, Shokrieh  M M. Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites. Engineering Fracture Mechanics, 2011, 78(14): 2620–2632
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed