Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2016, Vol. 10 Issue (1): 103-111   https://doi.org/10.1007/s11709-015-0328-4
  本期目录
A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D
Jiu-jiang WU1,2,Yan LI2,Qian-gong CHENG2,*(),Hua WEN1,Xin LIANG2,3
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
2. Department of Geological Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. Faculty of Civil Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
 全文: PDF(1296 KB)   HTML
Abstract

The numerical analysis of pile-soil interaction commonly requires a lot of trial works to determine the interface parameters and the accuracy cannot be ensured normally. Considering this, this paper first conducts a sensitivity analysis to figure out the influence of interface parameters on the bearing behavior of a single pile in sand. Then, a simplified method for the determination of pile-soil interface parameters in layered soil is proposed based on the parameter studies. Finally, a filed loading test is used for the validation of the simplified method, and the calculated results agree well with the monitoring data. In general, the simplified method proposed in this paper works with higher accuracy and consumes less time compared with the traditional trial works, especially on the determinations of interfacial cohesive and interfacial friction angle.

Key wordsdetermination of interface parameters    pile-soil interaction    FLAC3D    sensitivity analysis    layered soil
收稿日期: 2015-04-06      出版日期: 2016-01-19
Corresponding Author(s): Qian-gong CHENG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2016, 10(1): 103-111.
Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG. A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D. Front. Struct. Civ. Eng., 2016, 10(1): 103-111.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0328-4
https://academic.hep.com.cn/fsce/CN/Y2016/V10/I1/103
Fig.1  
items ρ/ (kg·m−3) E/MPa K/MPa G/MPa c (kPa) φ/ (°) μ
fine sand Q3al 1900 33 27.5 12.69 2 35 0.2
pile Q3al 2500 3 × 104 1670 1250 0.3
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
items Poisson’s ratio bulk modulus /MPa shear modulus /MPa cohesive /kPa internal friction angle /(°) density /(kg·m-3)
mucky clay 0.3 5.33 2.46 14 11.5 1670
silty clay 0.4 60.00 12.86 15 22 1980
sandy silt 0.3 35.00 16.15 3 32.5 1870
fine sand 0.3 41.67 19.23 1 33.5 1920
silty sand 0.3 166.67 76.92 2 34 1910
coarse sand 0.3 333.33 153.85 5 32 2020
C50 concrete(pile body) 0.2 19166 14375 2400
Tab.2  
Fig.10  
items cc/kPa φc/(°)
mucky clay 0 0
silty clay 4 6
sandy silt 1 12
fine sand 1 19
silty sand 1 24
coarse sand 3 23
Tab.3  
items kn/kPa ks/kPa cc/kPa φc/(°)
mucky clay 246 2.46 0 0
silty clay 1286 30 3.8 6
sandy silt 1615 32.3 1.1 12
fine sand 1923 57.7 1 19.5
silty sand 7692 215 1.45 25
coarse sand 15385 308 3.75 24.5
Tab.4  
Fig.11  
Fig.12  
1 Zhang  G, Zhang  J M. Numerical modeling of soil-structure of a concrete-faced rockfill dam. Computers and Geotechnics, 2009, 36(5): 762–772
2 Zhou  A, Lu  T, Yao  L. Current research and prospect of mechanical behaviors of soil-structure interfaces. Journal of Hohai University, 2007, 35(5): 524–528 
3 Zhang  D J, Lu  T H. Establishment and application of an interface model between Soil and Structure. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 62–66 (in Chinese)
4 Jin  C Y, Feng  X T. Research and application of nonlinear elastic-hardening interfacial constitutive model in disturbed belt. Material Research Innovations, 2011, 12(s1): 605–608
5 Yang  Y, Liu  Z. Contact surface element method for three-dimensional elastic contact problems. Lixue Xuebao, 1996, 28(5): 613–619
6 Goodman  R F, Taylor  R L, Brekke  T L. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM3): 637–660
7 Acer  Y B, Durgunoglu  H T, Yumay  M T. Interface properties of sands. Journal of the Soil Mechanics and Foundations Division, 1982, 108(4): 648–654
8 Potyondy  J G. Skin friction between various soils and construction material. Geotechnique, 1961, 11(4): 339–353
9 Vogelsang  J, Huber  G, Triantafyllidis  T. A large-scale soil-structure interface testing device. Geotechnical Testing Journal, 2013, 36(5): 613–625
10 Taha  A, Fall  M. Shear behavior of sensitive marine clay-concrete interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(4): 644–650
11 Cai  Y, Zhu  H, Zhuang  X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering, 2014, 7(4): 369–378
12 Wu  W, Zhu  H, Zhuang  X, Ma  G, Cai  Y. A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis. Theoretical and Applied Fracture Mechanics, 2014, 72(SI): 136–149
13 Itasca Consulting Group, Inc. FLAC3D − Fast Lagrangian Analysis of Continua in 3 Dimensions. Ver. 3.1, User's Manual. Minneapolis: Itasca, 2006
14 Fan  Z, Wang  Y, Xiao  H, Zhang  C. Analytical method of load-transfer of single pile under expansive soil swelling. Journal of Central South University, 2007, 14(4): 575–579
15 Yin  Z, Hong  Z, Xu  G. A study of deformation in the interface between soil and concrete. Computers and Geotechnics, 1995, 17(1): 72–92
16 VuBac  N, Silani  M, Lahmer  T, Zhuang  X, Rabczuk  T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science: Part B, 2015, 96(SI): 520–535
17 VuBac  N, Rafiee  R, Lahmer  T, Zhuang  X, Rabczuk  T. Uncertainty quantification for multi-scale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2014, (68): 446–464
18 Jing  J P, Gao  G Y, Zhang  Y S. Strengthening effect of total pile lateral friction by improving rock or soil strength at pile tip. Rock and Soil Mechanics, 2009, 30(9): 2609–2615 (in Chinese)
19 Yuan  D, Huang  H, Ma  J. Three dimension nonlinear numerical analysis of negative friction of pile side in soft groud. Underground Space, 2004, 24(2): 456–460 (in Chinese)
20 Wang  W D, Li  Y H, Wu  J B. Field loading tests on large-diameter and super-long bored piles of Shanghai Center Towers. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1817–1826 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed