Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (1): 58-66   https://doi.org/10.1007/s11709-017-0383-0
  本期目录
Properties of cement grout modified with ultra-fine slag
Sowmini GOPINATHAN, K B ANAND()
Department of Civil Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, Pin code 641 112, India
 全文: PDF(853 KB)   HTML
Abstract

The purpose of the study is to obtain a cement grout with improved performance. The grout mixes of the present study contain cement, ultra-fine slag (UFS), super plasticizer and water. Properties like flowability, bleeding, compressive strength and shrinkage of cement grouts have been studied. Rheological parameters were also studied in order to explain the grout workability. The results show that, cement replacement with slag in grouts could reduce bleeding substantially without affecting the workability of the mixes. Introduction of slag enhanced the compressive strength and reduced shrinkage reasonably. Ultra-fine slag can be used as a supplementary cementitious material in cementitious grouts in order to improve the grout behavior.

Key wordscement grout    ultra-fine slag    flowability    bleeding    viscosity
收稿日期: 2016-06-16      出版日期: 2018-03-08
Corresponding Author(s): K B ANAND   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(1): 58-66.
Sowmini GOPINATHAN, K B ANAND. Properties of cement grout modified with ultra-fine slag. Front. Struct. Civ. Eng., 2018, 12(1): 58-66.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0383-0
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I1/58
chemical (%)physical
calcium oxide, CaO30-34bulk density600-700 kg/m3
aluminum oxide, Al2O318-25surface area12000 cm2/gm
silicon dioxide, SiO230-36average particle size4-6 microns
iron oxide, Fe2O30.8-3.0
magnesium oxide, MgO6-10
Tab.1  
SNF0.40.60.81.01.2
PCE0.60.851.11.351.6
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
grout designationgrout composition detailscompressive strength, MPa (28day)
w/cSP%UFS%
SNF00.350.4039.4
SNF10.350.6548.9
SNF20.350.81041.3
SNF30.40.4540.0
SNF40.40.61041.9
PCE00.30.6041.2
PCE10.30.6543.0
PCE20.30.61051.8
PCE30.30.61553.1
Tab.3  
Fig.12  
Fig.13  
1 Krishnamoorthy T S, Gopalakrishnan S, Balasubramanian K, Bharatkumar B H, Rama Mohan Rao P. Investigation on the cementitious grouts containing supplementary cementitious materials. Cement and Concrete Research, 2002, 32(9): 1395–1405
2 Huang W H. Improving the properties of cement-fly ash grout using fibre and superplasticizer. Cement and Concrete Research, 2001, 31(7): 1033–1042
3 Ma C, Tan Y, Li E, Dai Y, Yang M. High-performance grouting mortar based on mineral admixtures. Advances in Materials science and Engineering, 2015, 260:1–11
4 Khayat K H, Yahina A, Duffy P. High-performance cement grout for post-tensioning applications. ACI Materials Journal, 1999, 96: 471–477
5 Jamal Shannag M. High-Performance cementitious grout for structural repair. Cement and Concrete Research, 2002, 32(5): 803–808
6 Al-Manaseer A A, Keill L D. Physical properties of cement grout containing silica fume and superplasticizer. ACI Materials Journal, 1992, 89: 154–160
7 Bastien J, Dugat J, Prat E. Cement grout containing precipitated silica and superplasticizers for post-tensioning. ACI Materials Journal, 1997, 94: 291–295
8 Saurabh Gupta, Sanjay Sharma, Devinder Sharma. A review on alccofine: a supplementary cementitious material. International Journal of Modern Trends in Engineering and Research, 2015, 114–118
9 Woodward R J, Miller E. Grouting post-tensioned concrete bridges: the prevention of voids. Highways and Transportation, 1990, 37(6): 9–17
10 IS. 12269: Ordinary Portland Cement, 53 Grade – Specification. Bureau of Indian Standards, 2013
11 D. L.Kantro. Influence of water-reducing admixtures on properties of cement paste- a miniature slump test. Cement, Concrete and Aggregate, 1980, 1.2(2): 95–102
12 Jayasree C, Gettu R. Correlating properties of superplasticized paste, mortar and concrete. Indian Concrete Journal, 2010, 84(7): 7–18
13 Ferraris C F, Karthik H. Obla, Russel Hill. The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research, 2001, 31(2): 245–255
14 ASTM C 940–98a: Expansion and bleeding of freshly mixed grouts for preplaced-aggregate concrete in the laboratory. ASTM International, West Conshohocken, PA, United States
15 ASTM C 937–02: Standard specification for grout fluidifier for preplaced-aggregate concrete. ASTM International, West Conshohocken, PA, United States
16 ASTM C 942–99: Compressive strength of grouts for preplaced-aggregate concrete in the laboratory. ASTM International, West Conshohocken, PA, United States
17 IS 1343: Pres-stressed concrete- Code for Practice. Bureau of Indian Standards, 2012
18 Schokker A J, Koester B D, Breen J E, Kreger M E. Development of high performance grouts for bonded post-tensioned structures. Bureau of Engineering Research, 1999, 1405–2: 10
19 Post-tensioning Institute. Guide specification for grouting of post-tensioned structures. PTI Committee on Grouting specifications, 1997, 5th draft
20 ASTM C 157/C 157M- 08. Standard test method for length change of hardened hydraulic-cement mortar and concrete. ASTM International, West Conshohocken, PA, United States
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed