Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 315-321   https://doi.org/10.1007/s11709-017-0386-x
  本期目录
Investigation on the performance and detoxification of modified low temperature coal tar pitch
Fengyan SUN(), Yu LIU
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
 全文: PDF(1021 KB)   HTML
Abstract

In this paper, studies on the modification on the low temperature coal tar pitch extracted from coal tar residue in Inner Mongolia are conducted. First, the low temperature coal tar pitch in liquid state is solidified with a higher softening point by chemical crosslinking modification. The modified coal tar pitch can achieve the standard pavement performance requirements. Then, the effects of chemical crosslinking agent and physical modification additives on the mechanical performance and toxic properties of coal tar pitch are investigated. The detoxification mechanism is also studied, which further promote the applicability of modified low temperature coal tar pitch in the pavement constructions.

Key wordscoal tar pitch    low temperature    modification    detoxification
收稿日期: 2016-11-07      出版日期: 2017-08-24
Corresponding Author(s): Fengyan SUN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 315-321.
Fengyan SUN, Yu LIU. Investigation on the performance and detoxification of modified low temperature coal tar pitch. Front. Struct. Civ. Eng., 2017, 11(3): 315-321.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0386-x
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/315
ElementN%C%H%S%O%C/ H灰分
Content0.8790.664.37<0.053.271.720.29%
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
NO.H2SO4(w%)BaP content(μg/mL, ppm)BaP removal efficiency(%)Softening point(℃)
107010<15
20.2536248.3642.1
31.0028958.7868.3
Tab.2  
NO.CH2O(w%)BaP content(μg/mL, ppm)BaP removal efficiency(%)Softening point(℃)
10.06990.29<15
25.06921.2825.5
37.532353.9254.6
415.049229.2425.6
530.056219.8317.5
Tab.3  
NO.CR(w%)BaP content(μg/mL, ppm)BaP removal efficiency(%)Softening point(℃)
10.2533951.6446.7
20.7535249.7943.1
31.0031155.6356.0
Tab.4  
NO.TIME(h)BaP content
(μg/mL,ppm)
BaP removal efficiency(%)Softening point(℃)
12.049629.2438.2
22.533951.6450.5
33.028759.0158.0
Tab.5  
NO.Temperature(℃)BaP content(μg/mL,ppm)BaP removal efficiency(%)Softening point(℃)
111057817.5534.5
212033951.6450.5
313032054.3563.1
Tab.6  
1 Zubkova V. Influence of polyethylene terephthalate on the carbonisation of bituminous coals and on the modification of their electric and dielectric properties. Fuel, 2006, 85(12): 1652–1665
https://doi.org/10.1016/j.fuel.2006.03.006
2 Zhang L, Liu G, Wang Y, Shen J, Li R, Du J, Yang Z, Xu Q. Modification of coal tar pitch with P-phthalaldehyde to reduce toxic PAH content. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2016, 38(5): 737–743
https://doi.org/10.1080/15567036.2015.1128016
3 Stompeil x, y, Z, and Collin g, Szen a. Koks smola Gaz, 1998,33 (L): 24
4 Li Q, Bai H, Zhang J, Fang H, Wang G, Xiang D. Comparison of SBS and EVA in modifying carbobitumen. Journal of Wuhan University of Science and Technology, 2009, 32(3): 293–295 (Natural Science Edition)
5 Efimova O S, Khokhlova G P, Patrakov Y F. Thermal conversion of coal-tar pitch in the presence of silicon compounds. Solid Fuel Chemistry, 2010, 44(1): 5–11
https://doi.org/10.3103/S0361521910010027
6 Czosnek C, Ratuszek W, Janik J F, Olejniczak Z. XRD and 29Si MAS NMR spectroscopic studies of carbon materials obtained from pyrolyses of a coal tar pitch modified with various silicon-bearing additives. Fuel Processing Technology, 2002, 79(3): 199–206
https://doi.org/10.1016/S0378-3820(02)00176-5
7 Bhatia G, Aggarwal R K, Chari S S, Jain G C. Rheological characteristics of coal tar and petroleum pitches with and without additives. Carbon, 1977, 15(4): 219–223
https://doi.org/10.1016/0008-6223(77)90003-3
8 Wang Y, He Z, Zhan L, Liu X. Coal tar pitch based carbon foam for thermal insulating material. Materials Letters, 2016, 169: 95–98
https://doi.org/10.1016/j.matlet.2016.01.081
9 Tan Y Q, Guo M, Cao L P, Zhang L. Performance Optimization of Composite Modified Asphalt Sealant based on Rheological Behavior. Construction & Building Materials, 2013, 47: 799–805
https://doi.org/10.1016/j.conbuildmat.2013.05.015
10 Guo M, Motamed A, Tan Y Q, Bhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design, 2016, 105: 25–33
https://doi.org/10.1016/j.matdes.2016.04.102
11 Tan Y Q, Guo M. Using Surface Free Energy Method to Study the Cohesion and Adhesion of Asphalt Mastic. Construction & Building Materials, 2013, 47: 254–260
https://doi.org/10.1016/j.conbuildmat.2013.05.067
12 Tan Y Q, Guo M. Study on the Phase Behavior of Asphalt Mastic. Construction & Building Materials, 2013, 47: 311–317
https://doi.org/10.1016/j.conbuildmat.2013.05.064
13 Lin Q, Li J, Yang Y, Xie Z. Thermal behavior of coal-tar pitch modified with BMI resin. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 29–33
https://doi.org/10.1016/j.jaap.2009.09.007
14 Schneider K, Roller M, Kalberlah F, Schuhmacher-wolz U. Cancer risk assessment for oral exposure to PAH mixtures. Journal of Applied Toxicology, 2002, 22(1): 73–83
https://doi.org/10.1002/jat.828
15 Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
16 Hou Y, Yue P, Wang L, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015a, 48(9): 2997–3008
https://doi.org/10.1617/s11527-014-0372-x
17 Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
18 Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J. Quasi-brittle Fracture Modeling of Pre-Flawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering. 2016a, (6): 1–7
https://doi.org/10.1617/s11527-014-0372-x
19 Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016b, 28(10): 04016100
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001581
20 Hou Y, Wang L, Wang D, Liu P, Guo M, Yu J. Characterization of Bitumen Micro-mechanical Behaviors Using AFM, Phase Dynamics Theory and MD simulation. Materials, 2017, 10(2): 208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed