Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (2): 215-221   https://doi.org/10.1007/s11709-017-0401-2
  本期目录
Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads
Pengfei LIU(), Dawei WANG, Frédéric OTTO, Markus OESER
Institute of Highway Engineering, RWTH Aachen University, Aachen D52074, Germany
 全文: PDF(1298 KB)   HTML
Abstract

To facilitate long term infrastructure asset management systems, it is necessary to determine the bearing capacity of pavements. Currently it is common to conduct such measurements in a stationary manner, however the evaluation with stationary loading does not correspond to reality a tendency towards continuous and high speed measurements in recent years can be observed. The computational program SAFEM was developed with the objective of evaluating the dynamic response of asphalt under moving loads and is based on a semi-analytic element method. In this research project SAFEM is compared to commercial finite element software ABAQUS and field measurements to verify the computational accuracy. The computational accuracy of SAFEM was found to be high enough to be viable whilst boasting a computational time far shorter than ABAQUS. Thus, SAFEM appears to be a feasible approach to determine the dynamic response of pavements under dynamic loads and is a useful tool for infrastructure administrations to analyze the pavement bearing capacity.

Key wordssemi-analytical finite element method    bearing capacity    asphalt pavements    moving loads    dynamic response
收稿日期: 2016-11-19      出版日期: 2018-04-23
Corresponding Author(s): Pengfei LIU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(2): 215-221.
Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0401-2
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I2/215
Fig.1  
Fig.2  
Fig.3  
layer thickness (mm) µ E (MPa) density (t/mm3)
Surface course 40 0.35 11150 2.377 E-09
Binder course 50 0.35 10435 2.448 E-09
Asphalt base course 110 0.35 6893 2.301 E-09
Gravel base layer 150 0.49 157.8 2.400 E-09
Frost protection layer 570 0.49 125.7 2.400 E-09
Sub-grade 2000 0.49 98.9 2.400 E-09
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
measurement ABAQUS difference SAFEM difference
strain along the traffic direction on the bottom of the asphalt base course [μm/m] 81.5 87.0 6.75% 86.3 5.88%
vertical tensile stress on the top of the gravel base layer [MPa] -0.0556 -0.0316 -43.1% -0.0283 -49.1%
Tab.2  
ABAQUS SAFEM
elements 160016 2958
nodes 274122 6167
computational time (h) 19.22 0.92
Tab.3  
1 Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
2 Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
3 Ferne B W, Langdale P, Roundm N, Faircloughm R. Development of a Calibration Procedure for the U.K. Highways Agency Traffic-Speed Deflectometer. Transportation Research Record, 2009a, 2093(1): 111–117
https://doi.org/10.3141/2093-13
4 Ferne B W, Langdale P, Roundm N, Faircloughm R. Development of the UK Highways Agency Traffic Speed Deflectometer. Bearing Capacity of Roads, Railways and Airfields, London, Champaign, IL: Taylor & Francis Group, 2009b, 409–418.
5 Muller W B, Roberts J. Revised Approach to Assessing Traffic Speed Deflectometer Data and Field Validation of Deflection Bowl Predictions. International Journal of Pavement Engineering, 2013, 14(4): 388–402
https://doi.org/10.1080/10298436.2012.715646
6 Baltzer S, Pratt D, Weligamage J, Adamsen J, Hildebrand G. Continuous Bearing Capacity Profile of 18,000 km Australian Road Network in 5 Months. In: the 24th ARRB Conference Proceedings, Melbourne, Australia, 2010
7 Goktepe A B, Agar E, Lav A H. Advances in Backcalculating the Mechanical Properties of Flexible Pavements. Advances in Engineering Software, 2006, 37(7): 421–431
https://doi.org/10.1016/j.advengsoft.2005.10.001
8 Fritz J J. Flexible Pavement Response Evaluation Using the Semi-Analytical Finite Element Method. International Journal of Materials and Pavement Design, 2002, 3(2): 211–225
https://doi.org/10.1080/14680629.2002.9689923
9 Hu S, Hu X, Zhou F. Using Semi-Analytical Finite Element Method to Evaluate Stress Intensity Factors in Pavement Structure. Rilem International Conference on Cracking in Pavements, 2008
10 Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics. 6th edition, Elsevier Butterworth-Heinemann, Oxford, 2005
11 Liu P, Wang D, Oeser M, Chen X. Einsatz der Semi-Analytischen Finite-Elemente-Methode zur Beanspruchungszustände von Asphaltbefestigungen. Bauingenieur, 2014, 89(7/8): 333–339 (in German)
12 Liu P, Wang D, Oeser M. The Application of Semi-Analytical Finite Element Method Coupled with Infinite Element for Analysis of Asphalt Pavement Structural Response. Journal of Traffic and Transportation Engineering, 2015, 2(1): 48–58
13 Liu P, Wang D, Oeser M. Leistungsfähige semi-analytische Methoden zur Berechnung von Asphaltbefestigungen. Tangungsband, 3.Dresdner Asphalttage, 2013 (in German)
14 Kim J R, Kim W D, Kim S J. Parallel Computing Using Semianalytical Finite Element Method. AIAA Journal, 1994, 32(5): 1066–1071
https://doi.org/10.2514/3.12095
15 Zienkiewicz O C, Taylor R L. The Finite Element Method, Volume 1 The Basis. 5th edition, Elsevier Butterworth-Heinemann, Oxford, 2000
16 ABAQUS. ABAQUS analysis user’s manual. Dassault Systemes Simulia Corp., 2011
17 Gohl S. Vergleich der gemessenen mechanischen Beanspruchungen der Modellstraße der BASt mit den Berechnungsergebnissen ausgewählter Programme. TU Dresden, Professur für Straßenbau, Diplomarbeit, 2006 (In German).
18 Rabe R. Bau einer instrumentierten Modellstraße in Asphaltbauweise zur messtechnischen Erfassung der Beanspruchungssituation im Straßenaufbau. AP 03 342, interner Bericht, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2004 (In German)
19 Rabe R. Messtechnische Erfassung der Beanspruchungen im Straßenaufbau infolge LKW-Überfahrten über eine Modellstraße in Asphaltbauweise‘, AP 04 342, interner Bericht, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2007 (In German)
20 Rabe R. Angaben zum Aufbau der Modellstraße und Angabe von ausgewählten Ergebnissen und Materialkennwerten. Bergisch Gladbach, 2014 (In German)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed