Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 308-314   https://doi.org/10.1007/s11709-017-0405-y
  本期目录
A methodology of implementing target mixing ratio for asphalt mixture
Yucheng HUANG1,2(), Lun JI3, Rui WEN4, Ming ZHANG5
1. National Center for Materials Service Safety, Joint USTB-Virginia Tech Lab on Multifunctional Materials, University of Science and Technology Beijing, Beijing, China
2. Virginia Tech, Blacksburg, VA 24061, United States
3. School of Transportation Science and Technology, Harbin Institute of Technology, Harbin, China
4. Shanghai Investigation, Design & Research Institute CO., LTD, Shanghai, China
5. Highway Administration Bureau of Liaoning Provincial Communications Department, Harbin, China
 全文: PDF(672 KB)   HTML
Abstract

In order to implement the objective mix design of hot mix asphalt adequately during the construction process, the significance of objective mixing ratio was elaborated, and the variability of materials and its control method were analyzed. An engineering example is used to illustrate the debugging process of asphalt mixture batching & mixing plant and the dynamic quality management methods. The results show that the set of methods can not only implement the objective mixing ratio of hot mix asphalt adequately, but also control production during the construction process effectively.

Key wordsasphalt mixture    target mixing ratio    mix design implementation    batching & mixing plant debugging
收稿日期: 2016-11-06      出版日期: 2017-08-24
Corresponding Author(s): Yucheng HUANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 308-314.
Yucheng HUANG, Lun JI, Rui WEN, Ming ZHANG. A methodology of implementing target mixing ratio for asphalt mixture. Front. Struct. Civ. Eng., 2017, 11(3): 308-314.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0405-y
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/308
aggregate size/mmdeviation/%
≥4.75≤5
0.15–2.36≤3
0.075≤1
Tab.1  
Fig.1  
sieve sizetaylor x-coordinate1# cold silo2# cold silo3# cold silo4# cold silo5# cold silofillercomposite gradation of cold silostarget gradationupper limit of gradationlower limit of gradation
31.54.72100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0
26.54.37100.0100.0100.0100.0100.0100.0100.099.7100.090.0
19.03.7614.599.5100.0100.0100.0100.081.982.890.080.2
16.03.481.089.7100.0100.0100.0100.076.776.482.672.6
13.23.190.067.4100.0100.0100.0100.071.266.672.562.5
9.502.750.024.298.599.6100.0100.060.555.661.151.1
4.752.020.06.125.691.399.1100.039.534.241.331.3
2.361.470.03.02.152.691.2100.027.322.828.622.6
1.181.080.02.31.429.071.6100.020.917.122.816.8
0.600.790.01.81.115.242.9100.014.811.117.211.2
0.300.580.01.40.88.316.799.310.07.913.17.1
0.150.430.00.80.53.52.391.06.86.19.94.0
0.0750.310.00.50.31.71.378.55.55.17.03.5
mix proportion——21.024.021.014.014.06.0100.0——————
Tab.2  
Fig.2  
silotarget mix proportiondelivery speed of cold silos (ton/hour)frequency of cold silos (Hz)
1#2228.311.44
2#2632.37.1
3#2228.36.8
4#1518.95.22
5#1518.911
total100126.6 (excluding asphalt and fillers)——
Tab.3  
sieve sizetaylor x-coordinate1# hot silo2# hot silo3# hot silo4# hot silofillercomposite gradation of hot silostarget gradationupper limit of gradationlower limit of gradation
31.504.72100.0100.0100.0100.0100.0100.0100.0100.0100.0
26.504.37100.0100.0100.0100.0100.0100.099.7100.090.0
19.003.7632.8100.0100.0100.0100.085.282.890.080.2
16.003.489.687.6100.0100.0100.077.676.482.672.6
13.203.191.447.5100.0100.0100.067.566.672.562.5
9.502.750.54.588.0100.0100.056.155.661.151.1
4.752.020.00.03.494.0100.036.334.241.331.3
2.361.470.00.00.062.2100.025.622.828.622.6
1.181.080.00.00.043.7100.019.817.122.816.8
0.600.790.00.00.026.0100.014.211.117.211.2
0.300.580.00.00.013.299.310.17.913.17.1
0.150.430.00.00.04.791.06.96.19.94.0
0.0750.310.00.00.02.478.55.55.17.03.5
mix proportion——22.020.520.031.56.0100.0——————
Tab.4  
Fig.3  
Fig.4  
1 Tan Y, Dong Z, Cao L, Yu-hui E. Designing Cold Recycled Asphalt Mixtures with Superpave Volumetric Design Method. Journal of Highway and Transportation Research and Development, 2005, 22(3): 31–34 
2 Ibrahim M. Asi. Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions. Construction & Building Materials, 2007, (21): 1732–1740
3 Tan J, Zhang X, Liao G. Volume Design of Asphalt Mixture and Its Effect Evaluation. Journal of Highway and Transportation Research and Development, 2005, 22(6): 1–6 
4 Hui W, Zhang Q. Design method of target mixing ratio for asphalt mixture. Journal of Chang’an University, 2004, 24(6): 25–28 
5 Hu H. Study on Variability of Asphalt Pavement Construction Quality. Xi’an: Chang’an University, 2005
6 Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
7 Hou Y, Yue P, Wang L, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015, 48(9): 2997–3008
https://doi.org/10.1617/s11527-014-0372-x
8 Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier–Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016, 28(10): 4016100
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001581
9 Hou Y, Sun W, Huang Y R, Ayatollahi M, Wang L. A Diffuse Interface Model to Investigate the Asphalt Concrete Cracking subjected to Shear Loading at Low Temperature. Journal of Cold Regions Engineering, 2016, 31(2): 04016009
10 Miao Y, Huang Y, Zhang Q, Wang L. Effect of temperature on resilient modulus and shear strength of unbound granular materials containing fine RAP. Construction & Building Materials, 2016, 124: 1132–1141
https://doi.org/10.1016/j.conbuildmat.2016.08.137
11 Guo M, Motamed A, Tan Y, Bhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design, 2016, 105: 25–33
https://doi.org/10.1016/j.matdes.2016.04.102
12 Guo M, Tan Y, Zhou S W. Multiscale Test Research on Interfacial Adhesion Property of Cold Mix Asphalt. Construction & Building Materials, 2014, 68: 769–776
https://doi.org/10.1016/j.conbuildmat.2014.06.031
13 Liu Y, Sun W, Nair H, Lane D S, Wang L. Quantification of aggregate morphologic characteristics with the correlation to uncompacted void content of coarse aggregates in Virginia. Construction & Building Materials, 2016, 124: 645–655
https://doi.org/10.1016/j.conbuildmat.2016.06.150
14 Liu Y, Sun W, Nair H, Stephen Lane D, Wang L. Quantification of Aggregate Morphologic Characteristics as Related to Mechanical Properties of Asphalt Concrete with Improved FTI System. Journal of Materials in Civil Engineering, 2016, 28(8): 04016046
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001535
15 Sun W, Wang L, Tutumluer E. Image analysis technique for aggregate morphology analysis with two-dimensional Fourier transform method. Transportation Research Record, 2012, 2267: 3–13
https://doi.org/10.3141/2267-01
16 Kandhal P S, Parker F. Aggregate tests related to asphalt concrete performance in pavements. NCHRP Report No. 405, Transportation Research Board, Washington, D.C., 1998
17 Krumbein W C. Measurement and geological significance of shape and roundness of sedimentary aggregates. Journal of Sedimentary Petrology, 1941, 11: 64–72
https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D
18 Bessa I, Branco V, Soares J, Neto J. Aggregate Shape Properties and Their Influence on the Behavior of Hot-Mix Asphalt. Journal of Materials in Civil Engineering, 2015, 27(7): 04014212
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001181
19 Chen J S, Chang M K, Lin K Y. Influence of coarse aggregate shape on the strength of asphalt concrete mixtures. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6: 1062–1075
20 Tan Y, Guo M. Using Surface Free Energy Method to Study the Cohesion and Adhesion of Asphalt Mastic. Construction & Building Materials, 2013a, 47: 254–260
https://doi.org/10.1016/j.conbuildmat.2013.05.067
21 Tan Y, Guo M. Study on the Phase Behavior of Asphalt Mastic. Construction & Building Materials, 2013b, 47: 311–317
https://doi.org/10.1016/j.conbuildmat.2013.05.064
22 Zhang Y, Wang L, Zhang W, Diefenderfer B, Huang Y. Modified dynamic modulus test and customised prediction model of asphalt-treated drainage layer materials for M-E pavement design. International Journal of Pavement Engineering, 2016, 17(9): 818–828
https://doi.org/10.1080/10298436.2015.1019502
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed