Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 329-337   https://doi.org/10.1007/s11709-017-0407-9
  本期目录
A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics
Jing HU, Pengfei LIU(), Bernhard STEINAUER
Institute of Highway Engineering, RWTH Aachen University, D52074 Aachen, Germany
 全文: PDF(2738 KB)   HTML
Abstract

The aim of this paper is investigating the microstructural characteristics of asphalt mixture under different compaction powers. In order to achieve this aim, a test track was built to provide asphalt mixture specimens and X-ray computed tomography (XCT) device was used to scan the internal structure. The aggregate particles and air-voids were extracted using Digital Image Processing (DIP), so the relationship between compaction and air-voids was determined at first, and then, the effect of aggregate particles on the morphology of air-voids can be evaluated, finally, fatigue properties of asphalt mixture with different air-void ratio were measured by indirect tensile fatigue test as well. The research results release the distribution of microstructures in asphalt pavement. 3D fractal dimension is an effective indicator to quantize the complexity of aggregate particles and air-voids; suffering the same compaction power, aggregates cause different constitutions of air-voids in asphalt mixture; investigation in this paper can present the essential relationship between microstructures and fatigue properties.

Key wordsasphalt mixture    microstructure    morphology    digital image processing    fatigue damage
收稿日期: 2016-11-07      出版日期: 2017-08-24
Corresponding Author(s): Pengfei LIU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 329-337.
Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics. Front. Struct. Civ. Eng., 2017, 11(3): 329-337.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0407-9
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/329
Fig.1  
asphalt mixture virgin materials bitumen content (%) max. density (g/cm 3) ave. density (g/cm 3) * void ratio (%)
SMA-11S bitumen binder: Pen Bitumen 50/70 6.9 2.488 2.415 2.090
fibers: cellulose
filler(0/0.09 mm): limestone
sand(0/2 mm): diabase
coarse aggregates: diabase
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
depth (mm) test specimens form different cores
Core 1# Core 2# Core 3#
30 2.726 2.730 2.733
90 2.734 2.735 2.742
150 2.755 2.738 2.745
210 2.753 2.745 2.752
270 2.735 2.733 2.744
Tab.2  
Fig.12  
Fig.13  
Fig.14  
1 Hou Y, Wang  L, Pauli T ,  Sun W. Investigation of the asphalt self-healing mechanism using a phase-field model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
2 Apeagyei A K, Grenfell  J R A, Airey  G D. Observation of reversible moisture damage in asphalt mixtures. Construction & Building Materials, 2014, 60: 73–80
https://doi.org/10.1016/j.conbuildmat.2014.02.033
3 Presti D. L, Hassan  N. A, Khan  R, Airey G. Reclaimed Asphalt aest specimen preparation assisted by image analysis. Journal of Materials in Civil Engineering, 2014, 27(8): C4014005
4 Mohajeri M, Molenaar  A A A, Van de Ven  M F C. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Materials and Pavement Design, 2014, 15(2): 372–384
https://doi.org/10.1080/14680629.2014.883322
5 Arega Z A, Bhasin  A, Kesel T D . Influence of extended aging on the properties of asphalt composites produced using hot and warm mix methods. Construction & Building Materials, 2013, 44: 168–174
https://doi.org/10.1016/j.conbuildmat.2013.02.081
6 Braz D, Barroso  R C, Lopes  R T, Motta  L M G. Crack detection in asphaltic mixtures by computed tomography. NDT & E International, 2011, 44(2): 195–201
https://doi.org/10.1016/j.ndteint.2010.11.005
7 Moriyoshi A, Takahashi  N, Ikeda O ,  Kawashima M ,  Akabane T . Strain distribution in asphalt mixtures during the wheel tracking test at high temperatures. Construction & Building Materials, 2013, 40: 1128–1135
https://doi.org/10.1016/j.conbuildmat.2012.11.040
8 Liu P, Hu  J, Wang D ,  Oeser M ,  Alber S ,  Ressel W ,  Canon Falla G . Modelling and evaluation of aggregate morphology on asphalt compression behavior. Construction & Building Materials, 2017, 133: 196–208
https://doi.org/10.1016/j.conbuildmat.2016.12.041
9 Castillo D, Caro  S, Darabi M ,  Masad E . Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures. Construction & Building Materials, 2015, 93: 70–83
https://doi.org/10.1016/j.conbuildmat.2015.05.108
10 Aliha M R M ,  Fazaeli H ,  Aghajani S ,  Moghadas Nejad F . Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction & Building Materials, 2015, 95: 545–555
https://doi.org/10.1016/j.conbuildmat.2015.07.165
11 Yan K, Ge  D D, You  L Y, Wang  X L. Laboratory investigation of the characteristics of SMA mixtures under freeze–thaw cycles. Cold Regions Science and Technology, 2015, 119: 68–74
https://doi.org/10.1016/j.coldregions.2015.07.007
12 Khosravi H, Abtahi  S M, Koosha  B, Manian M . An analytical–empirical investigation of the bleeding mechanism of asphalt mixes. Construction & Building Materials, 2013, 45: 138–144
https://doi.org/10.1016/j.conbuildmat.2013.04.004
13 Kodippily S, Henning  T F P, Ingham  J M, Holleran  G. Computed tomography scanning for quantifying chipseal material volumetrics. Journal of Computing in Civil Engineering, 2014, 28(3): 04014002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000284
14 Coleri E, Harvey  J T, Yang  K, Boone J M . A micromechanical approach to investigate asphalt concrete rutting mechanisms. Construction & Building Materials, 2012, 30: 36–49
https://doi.org/10.1016/j.conbuildmat.2011.11.041
15 Coleri E, Harvey  J T, Yang  K, Boone J M . Micromechanical investigation of open-graded asphalt friction courses’rutting mechanisms. Construction & Building Materials, 2013, 44: 25–34
https://doi.org/10.1016/j.conbuildmat.2013.03.027
16 Sefidmazgi N. R ,  Tashman L ,  Bahia H. Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design, 2012, 13(sup1 S1): 21–37
https://doi.org/10.1080/14680629.2012.657045
17 Khan R, Grenfell  J, Collop A ,  Airey G ,  Gregory H . Moisture damage in asphalt mixtures using the modified SATS test and image analysis. Construction & Building Materials, 2013, 43: 165–173
https://doi.org/10.1016/j.conbuildmat.2013.02.003
18 Khan R, Grenfell  J, Collop A . Micromechanical modelling of typical Dense Bitumen Macadam (DBM) from laboratory testing and X-ray Computed Tomography (CT). Construction & Building Materials, 2015, 77: 1–6
https://doi.org/10.1016/j.conbuildmat.2014.12.028
19 Zhang Y Q, Luo  X, Luo R ,  Lytton R L . Crack initiation in asphalt mixtures under external compressive loads. Construction & Building Materials, 2014, 72: 94–103
https://doi.org/10.1016/j.conbuildmat.2014.09.009
20 Liu P, Wang  D, Otto F ,  Hu J, Oeser  M. Application of semi-analytical finite element method to evaluate asphalt pavement bearing capacity. International Journal of Pavement Engineering, 2017 
https://doi.org/10.1080/10298436.2016.1175562
21 Tashman L, Pearson  B. Characterisation of stone matrix asphalt mixtures. International Journal of Pavement Engineering, 2012, 13(4): 297–309
https://doi.org/10.1080/10298436.2011.595793
22 Zelelew H M, Papagiannakis  A T. A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images. International Journal of Pavement Engineering, 2011, 12(6): 543–551
https://doi.org/10.1080/10298436.2011.561345
23 Kutay M E, Arambula  E, Gibson N ,  Youtcheff J . Three-dimensional image processing methods to identify and characterise aggregates in compacted asphalt mixtures. International Journal of Pavement Engineering, 2010, 11(6): 511–528
https://doi.org/10.1080/10298431003749725
24 Xu X Y, Xu  S Z, Jin  L H, Song  E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, 2011, 32(7): 956–961
https://doi.org/10.1016/j.patrec.2011.01.021
25 Mizushima A, Lu  R. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Computers and Electronics in Agriculture, 2013, 94: 29–37
https://doi.org/10.1016/j.compag.2013.02.009
26 Arasan S, Yener  E, Hattatoglu F ,  Akbulut S ,  Hinislioglu S. The relationship between the fractal dimension and mechanical properties of asphalt concrete. International journal of civil and structural engineering, 2010, 1(2):165–70
27 Baer J U, Kent  T F, Anderson  S H. Image analysis and fractal geometry to characterize soil desiccation cracks. Geoderma, 2009, 154(1–2): 153–163
https://doi.org/10.1016/j.geoderma.2009.10.008
28 Farhidzadeh A, Dehghan-Niri  E, Moustafa A ,  Salamone S ,  Whittaker A . Damage assessment of reinforced concrete structures using fractal analysis of residual crack patterns. Experimental Mechanics, 2013, 53(9): 1607–1619
https://doi.org/10.1007/s11340-013-9769-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed