Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 346-352   https://doi.org/10.1007/s11709-017-0409-7
  本期目录
Study on micro-texture and skid resistance of aggregate during polishing
Zhenyu QIAN(), Lingjian MENG
National Center for Material Service Safety, University of Science and Technology Beijing, Beijing 100083, China
 全文: PDF(1217 KB)   HTML
Abstract

The skid resistance performance of pavement is closely related to the micro-texture of pavement aggregate, while there is very few research on the relationship between micro-texture and the skid resistance. In this paper, the optical microscope is used to acquire the surface morphology of three types of aggregates including basalt, limestone and red sandstone respectively, where a total of 12 indicators are developed based on the surface texture information. The polishing effect on aggregate is simulated by Wehner/Schulze (W/S) device, during the polishing procedure, the skid resistance are measured by British Pendulum Tester (BPT). Based on the results of independent T-test and the polishing resistance analysis, it shows that the surface texture of basalt is significantly different between limestone and red sandstone. Three indicators including the average roughness (Ra), the kurtosis of the surface (Sku) and the mean summit curvature (Ssc) are selected to describe the characteristics of aggregate micro-texture based on the correlation analysis. The contribution of micro-texture to the skid resistance can be described with the secondary polynomial regression model by these indicators.

Key wordsskid resistance of pavement    micro-texture    aggregates    polishing test
收稿日期: 2016-11-07      出版日期: 2017-08-24
Corresponding Author(s): Zhenyu QIAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 346-352.
Zhenyu QIAN, Lingjian MENG. Study on micro-texture and skid resistance of aggregate during polishing. Front. Struct. Civ. Eng., 2017, 11(3): 346-352.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0409-7
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/346
Fig.1  
Fig.2  
Fig.3  
Fig.4  
T-test Ra Rq Rz Sa Sku Sq Ssk Sz D Ssc LPSD q=1 w
B VS L 0.021 0.022 0.131 0.02 0.43 0.023 0.839 0.098 0.071 0.127 0.135 0.531
B VS R 0.028 0.027 0.077 0.026 0.352 0.029 0.281 0.062 0.044 0.423 0.078 0.049
L VS R 0.756 0.832 0.818 0.844 0.756 0.832 268 0.936 0.267 0.352 0.869 0.086
Tab.1  
Ra Rq Rz Ssc Sa Sku Sq Ssk Sz D LPSD q=1 w BPN
Ra 1 0.993 0.876 0.348 0.999 ?0.190 0.994 0.174 0.876 ?0.442 0.397 0.720 0.178
Rq 0.993 1 0.917 0.331 0.994 ?0.098 0.999 0.191 0.913 ?0.496 0.439 0.751 0.154
Rz 0.876 0.917 1 0.302 0.882 0.250 0.912 0.260 0.989 ?0.557 0.492 0.802 0.061
Ssc 0.348 0.331 0.302 1 0.345 ?0.051 0.338 0.085 0.313 0.458 ?0.405 0.261 0.093
Sa 0.999 0.994 0.882 0.345 1 ?0.183 0.995 0.174 0.880 ?0.447 0.400 0.723 0.175
Sku ?0.190 ?0.098 0.250 ?0.051 ?0.183 1 ?0.102 0.342 0.266 ?0.189 0.281 0.216 ?0.200
Sq 0.994 0.999 0.912 0.338 0.995 ?0.102 1 0.194 0.911 ?0.482 0.430 0.752 0.162
Ssk 0.174 0.191 0.260 0.085 0.174 0.342 0.194 1 0.251 ?0.171 0.264 0.289 ?0.053
Sz 0.876 0.913 0.989 0.313 0.880 0.266 0.911 0.251 1 ?0.533 0.486 0.809 0.083
D ?0.442 ?0.496 ?0.557 0.458 ?0.447 ?0.189 ?0.482 ?0.171 ?0.533 1 ?0.763 ?0.449 0.082
LPSD q=1 0.397 0.439 0.492 ?0.405 0.400 0.281 0.430 0.264 0.486 ?0.763 1 0.570 ?0.151
w 0.720 0.751 0.802 0.261 0.723 0.216 0.752 0.289 0.809 ?0.449 0.570 1 0.065
BPN 0.178 0.154 0.061 0.093 0.175 ?0.200 0.162 ?0.053 0.083 0.082 ?0.151 0.065 1
Tab.2  
Variable Constant Sku2 Ra Sku Ra·Ssc Ssc·Sku
Sig. 0.001 0.000 0.001 0.000 0.000 0.000
Tab.3  
1 Permanent International Association of Road Congresses (PIARC). The 18th World Road congresses Report..  Accessed July 31, 2016
2 Chen X H, Wang  D W. Fractal and spectral analysis of aggregate surface profile in polishing process. Wear, 2011, 271(11‒12): 2746–2750
https://doi.org/10.1016/j.wear.2011.05.024
3 Kane M, Artamendi  I, Scarpas T . Long-term skid resistance of asphalt surfacings: correlation between wehner-schulze friction values and the mineralogical composition of the aggregates. Wear, 2013, 303(1‒2): 235–243
https://doi.org/10.1016/j.wear.2013.03.022
4 Rohde S M. On the effect of pavement microtexture on thin film traction. International Journal of Mechanical Sciences, 1976, 2(18): 95–101
https://doi.org/10.1016/0020-7403(76)90057-6
5 Taneerananon P, Yandell  W O. Microtexture roughness effect on predicted road-tyre friction in wet conditions. Wear, 1981, 69(3): 321–337
https://doi.org/10.1016/0043-1648(81)90322-7
6 Rachakatla P. Application of relational database principles for rating bituminous coarse aggregates with respect to frictional performance. Dissertation for phD degree. Texas Tech University. 2000
7 Hou Y, Sun  F Y, Sun  W J, Guo  M, Xing C ,  Wu J F . Quasi-brittle fracture modeling of pre-flawed bitumen using a diffuse interface model. Advances in Materials Science and Engineering, 2016a, 2016: 8751646
8 Hou Y, Sun  W J, Das  P, Song X G ,  Wang L B ,  Ge Z, Huang  Y C. Coupled Navier-Stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading. Journal  of  Materials  in  Civil  Engineering, 2016b, 28(10): 04016100
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001581
9 Guo M, Motamed  A, Tan Y Q ,  Bhasin A . Investigating the interaction between asphalt binder and fresh and simulated RAP aggregate. Materials & Design, 2016, 105: 25–33
https://doi.org/10.1016/j.matdes.2016.04.102
10 Guo M, Tan  Y Q, Zhou  S W. Multiscale test research on interfacial adhesion property of cold mix asphalt. Construction & Building Materials, 2014, 68: 769–776
https://doi.org/10.1016/j.conbuildmat.2014.06.031
11 Tan Y Q, Guo  M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction & Building Materials, 2013, 47: 254–260
https://doi.org/10.1016/j.conbuildmat.2013.05.067
12 Tan Y Q, Guo  M. Micro- and nano-characteration of interaction between asphalt and filler. Journal of Testing and Evaluation, 2014, 42(5): 1089–1097
https://doi.org/10.1520/JTE20130253
13 Fletcher T, Chandan  C, Masad E ,  Sivakumar K . Aggregate imaging system for characterizing the shape of fine and coarse aggregates. Transportation Research Record, 2003, 1832(1),
https://doi.org/ 10.3141/1832-09
14 Chen G M, Tan  Y Q, Wang  Z R, Liu  L H, Ma  H P. Experimental design for measurement on aggregates surface texture. China Journal of Highway & Transport, 2006, 19(2): 36–41 (in Chinese)
15 Hou Y, Wang  L B, Yue  P T, Pauli  T, Sun W J . Modeling mode I cracking failure in asphalt binder by using nonconserved phase-field model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
16 Hou Y, Wang  L B, Yue  P T, Sun  W J. Fracture failure in crack interaction of asphalt binder by using a phase field approach. Materials and Structures, 2015a, 48(9): 2997–3008
https://doi.org/10.1617/s11527-014-0372-x
17 Hou Y, Wang  L B, Pauli  T, Sun W J . Investigation of the asphalt self-healing mechanism using a phase-field model. Journal of Materials in Civil Engineering, 2015b, 27(3): 1–13
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
18 ISO (International Organization for Standardization). Geometric product specifications (GPS)-Surface texture: profile method-Terms, definitions and surface texture parameters. Standard ISO 4287. British Standards Institution. 1997
19 ISO (International Organization for Standardization). Geometrical Product Specification (GPS)-Surface texture: profile method-Motif parameters. Standards ISO 12085. Swiss. 1996
20 Majumdar A, Bhushan  B. Fractal model of elastic-plastic contact between rough surfaces. Journal of Tribology, 1991, 113(1): 1–11
https://doi.org/10.1115/1.2920588
21 Xia Y Y, Zhu  R G. Application study in structural rock mass using fractal theory. Chinese Journal of Rock Mechanics & Engineering, 1997, 4(16): 69–74 (in Chinese)
22 Li Z C, Ji  C Y. Calculation of weed fractal dimension based on image analysis. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(11): 175–178 (in Chinese)
23 Wang D, Chen  X, Oeser M ,  Stanjek H ,  Steinauer B . Study of micro-texture and skid resistance change of granite slabs during the polishing with the Aachen polishing machine. Wear, 2014, 318(1–2): 1–11
https://doi.org/10.1016/j.wear.2014.06.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed