Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (4): 454-460   https://doi.org/10.1007/s11709-017-0454-2
  本期目录
Effect of embedment length of untreated natural fibres on the bond behaviour in cement mortar
Gudimella RAMAKRISHNA(), Sriraman PRIYADHARSHINI
Department of Civil Engineering, Pondicherry Engineering College, Puducherry 605014, India
 全文: PDF(777 KB)   HTML
Abstract

The present investigation is focused on studying the effects of various matrices with 1:3, 1:4 and 1:5 mortars and fibre types of sisal and coir on the bond behavior at various ages of curing, i.e., 24 h, 3 d, 7 d and 28 d. The other parameters included in the investigation are water/cement (w/c) ratio, sand gradation and embedment length of fibres. In addition, the type of failure of sisal and coir fibres for different mixes of mortars at various curing ages is also reported. From the results, it is seen that the bond strength is improving with respect to age of curing in case of sisal fibres, but decreases in case of coir fibres. The failure of fibres due to fibre fracture is observed in sisal fibres and fibre pullout is observed in coir fibres. The other varying parameters such as mortar mixes, sand gradation, w/c ratio and embedded length also showed significant effect on bond behaviour of sisal and coir fibre with the cement mortar mixes.

Key wordsbond strength    cement mortar    natural fibre    pullout test    type of failure
收稿日期: 2017-01-15      出版日期: 2018-11-20
Corresponding Author(s): Gudimella RAMAKRISHNA   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(4): 454-460.
Gudimella RAMAKRISHNA, Sriraman PRIYADHARSHINI. Effect of embedment length of untreated natural fibres on the bond behaviour in cement mortar. Front. Struct. Civ. Eng., 2018, 12(4): 454-460.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0454-2
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I4/454
Sl.No. property value IS 12269-1987 requirements
1 standard consistency (%) 29 -
2 initial setting time (min) 55 30 (min)
3 final setting time (min) 175 600 (max)
4 soundness (mm) 1 10 (max)
5 specific gravity 3.14 -
6 compressive strength (MPa)
i.3 d
ii.7 d
iii.28 d
28
38.5
56.7
27 (min)
37 (min)
53 (min)
Tab.1  
Sl.No. property value
1 specific gravity (no unit) 2.48
2 water absorption (%) 1.4
3 bulk density (gm/cc) 1.74
4 fineness modulus 2.5
Tab.2  
Fig.1  
Sl.No. 1 2 3 4 5 6
gauge length (mm) 30 40 50 60 70 80
diameter (mm) 0.15 0.13 0.12 0.13 0.15 0.13
failure load (N) 27.4 16.9 13.8 10.1 10 6.1
tensile strength (N/mm2) 1550.52 1273.23 1054.55 760.13 565.88 459.81
elongation (%) 7.33 7.25 4.4 3.33 3.15 2.25
Tab.3  
Sl.No. 1 2 3 4 5 6
gauge length (mm) 30 40 50 60 70 80
diameter (mm) 0.52 0.37 0.39 0.33 0.37 0.44
failure load (N) 7.4 7 16.2 13.2 18.1 31.5
tensile strength (N/mm2) 34.84 55.1 107.61 144.33 168.33 207.16
elongation (%) 11.3 16.25 28 29.2 32.8 35
Tab.4  
Fig.2  
Sl.No. EL (mm) age of curing (d) type of fibre failure for various mortar mixes
1:3 1:4 1:5
1 25 1 pullout pullout pullout
3 pullout pullout pullout
7 fracture pullout pullout
28 fracture fracture fracture
2 40 1 fracture fracture pullout
3 fracture fracture pullout
7 fracture fracture fracture
28 fracture fracture fracture
3 50 1 fracture fracture fracture
3 fracture fracture fracture
7 fracture fracture fracture
28 fracture fracture fracture
Tab.5  
Fig.3  
Sl.No. EL (mm) age of curing (d) type of fibre failure for various mortar mixes
1:3 1:4 1:5
?1 ?25 1 pullout pullout pullout
3 pullout pullout pullout
7 fracture pullout pullout
28 fracture pullout pullout
2 40 1 fracture pullout pullout
3 fracture pullout pullout
7 fracture pullout pullout
28 fracture pullout pullout
?3 50 1 pullout fracture pullout
3 pullout fracture pullout
7 fracture fracture fracture
28 fracture fracture fracture
Tab.6  
Fig.4  
Fig.5  
Fig.6  
type of mortar mix bond strength (MPa) at 28 d
sisal fibre coir fibre
1:3 0.37 0.12
1:4 0.19 0.09
1:5 0.18 0.11
Tab.7  
1 Bindiganavila V, Banthia N. Polymer and steel reinforced cementitious composites under impact loading– Part I: Bond-slip response. ACI Materials Journal, 2001, 98: 10–16
2 Cunha V M C F, Barros J A O, Sena-cruz J M. Pullout behaviour of steel fibres in self-contacting concrete. Journal of Materials in Civil Engineering, 2010, 22: 1–9
3 Naaman A E. Najm H. Bond-slip mechanisms of steel fibres in concrete. ACI Materials Journal, 1991, 88: 135–145
4 Savastano H, Agopyan V. Transition zone studies of vegetable fibre-cement paste composites. Cement and Concrete Composites, 1999, 21: 49–57
5 Mandel J A, Sun W, Said S. Studies of properties of the fibres-matrix interface in steel fibre reinforced mortar. ACI Materials Journal, 1987, 84: 205–216
6 Shannag J M. Brincker R, Hansen W. Interfacial (fibre-matrix) properties of high strength mortar from fibre pullout. ACI Materials Journal, 1996, 93: 480–486
7 Naaman A E, Shah S P. Pull-out mechanism in steel fibre reinforced concrete. Journal of the Structural Division, 1976, 19: 1537–1548
8 Bentur A, Mindest S, Diamond S. Pullout processes in steel fibre reinforced cement. International journal of cement composites and lightweight concrete, 1985, 7: 29–37
9 Naaman A E, Namur G G, Alwan J M, Najm H S. Fibre pullout and bond slip. I: Experimental validation. Journal of Structural Engineering, 1991, 17: 2791–2799
10 Peled A, Bentur A, Yankelevsky D Z. The nature of bond between monofilament polyethylene yarns and cement matrices. Cement and Concrete Composites, 1998, 20: 319–327
11 Sueki S, Soranakom C, Mobaser B, Peled A. A pullout-slip response of fabrics embedded in a cement paste matrix. Journal of Materials in Civil Engineering, 2007, 104: 933–941
12 Morrissey F E, Coutts R S P, Grossman P U A. Bond between cellulose fibres and cement. The international journal of cement composites and lightweight concrete, 1985, 7: 73–80
13 Ali M, Li X, Chouw N. Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 2013, 44: 596–605
14 Das B R, Banerjee P K. Interface bond and compatibility of jute with asphalt. Composites. Part A, Applied Science and Manufacturing, 2013, 53: 9–75
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed