Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (5): 1214-1226   https://doi.org/10.1007/s11709-019-0550-6
  本期目录
Parametric computational study on butterfly-shaped hysteretic dampers
Alireza FARZAMPOUR(), Matthew Roy EATHERTON()
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
 全文: PDF(2297 KB)   HTML
Abstract

A parametric computational study is conducted to investigate the shear yielding, flexural yielding, and lateral torsional buckling limit states for butterfly-shaped links. After validating the accuracy of the finite element modeling approach against previous experiments, 112 computational models with different geometrical properties were constructed and analyzed including consideration of initial imperfections. The resulting yielding moment, corresponding critical shear force, the accumulation of plastic strains through the length of links as well as the amount of energy dissipated are investigated. ‚€ƒThe results indicate that as the shape of the butterfly-shaped links become too straight or conversely too narrow in the middle, peak accumulated plastic strains increase. The significant effect of plate thickness on the buckling limit state is examined in this study. Results show that overstrength for these links (peak force divided by yield force) is between 1.2 and 4.5, with straight links producing larger overstrength. Additionally, proportioning the links to delay buckling, and designing the links to yield in the flexural mode are shown to improve energy dissipation.

Key wordsstructural fuse    hysteretic damper    finite element analysis    energy dissipation    initial imperfection    butterfly-shaped links
收稿日期: 2018-07-17      出版日期: 2019-09-11
Corresponding Author(s): Alireza FARZAMPOUR,Matthew Roy EATHERTON   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1214-1226.
Alireza FARZAMPOUR, Matthew Roy EATHERTON. Parametric computational study on butterfly-shaped hysteretic dampers. Front. Struct. Civ. Eng., 2019, 13(5): 1214-1226.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-019-0550-6
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I5/1214
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 J E Martínez-Rueda. On the evolution of energy dissipation devices for seismic design. Earthquake Spectra, 2002, 18(2): 309–346
https://doi.org/10.1193/1.1494434
2 T Hitaka, C Matsui. Seismic performance of Steel Shear Wall with Slits integrated with multi story composite moment frame. In: The 5th International Conference on Behavior of Steel Structures in Seismic Areas, Yokohama, 2006
3 X Ma, E Borches, A Pena, H Krawinkler, S Billington, G Dierlein. Design and Behavior of Steel Shear Plates with Opening as Energy Dissipating Fuses. The John A. Blume Earthquake Engineering Center, Report No. 173, 2011
4 C K Lee, Y Ju, J Min, S Lho, S Kim. Non-uniform steel strip dampers subjected to cyclic loadings. Engineering Structures, 2015, 99(15): 192–204
https://doi.org/10.1016/j.engstruct.2015.04.052
5 G Luth, H Krawinkler, B McDonald, M Park. USC School of Cinema: An Example of Reparable Performance Based Design. In: SEAOC 2008 convention proceedings, 2008
6 A Farzampour. Evaluating shear links for use in seismic structural fuses. Thesis for the Doctor’s Degree. Blacksburg VA: Virginia Tech, 2019
7 T Kobori, Y Miura, E Fukuzawa, T Yamanda, T Arita, Y Takenaka, N Miyagwa, N Tanaka, T Fukumoto. Development and application of hysteresis steel dampers. In: Earthquake Engineering 10th Conference, Rotterdam: Belkema, 1992
8 A Farzampour, M Eatherton. Simultaneous consideration of shear and flexural stresses for butterfly-shaped dampers design. In: International Conference on Materials Engineering and Applications, Hongkong, China: ICMEA, 2018
9 M Malakoutian, J W Berman, P Dusicka, A Lopes. Seismic performance and design of linked Column Frame System (LCF). In: The 15th World Conference on Earthquake Engineering, Lisbon: Sociedade Portuguesa de Engenharia Sismica (SPES), 2012
10 S H Oh, Y J Kim, H S Ryu. Seismic performance of steel structures with slit dampers. Engineering Structures, 2009, 31(9): 1997–2008
https://doi.org/10.1016/j.engstruct.2009.03.003
11 Y Kawai, T Ono, A Sato, M Kondo. Allowable design formula for steel sheet shear walls with burring holes. In: Proceedings of the 7th International Conference, Baltimore, Maryland: Coupled Instabilities in Metal Structures (CIMS), 2016
12 Simulia. Dassault Systems Simulia Corporation ABAQUS-6.14, Johnston, RI, 2014
13 A Farzampour, M Eatherton. Lateral torsional buckling of butterfly-shaped shear links. In: SSRC Annual Stability Conference, Proceedings of Annual Stability Conference Structural Stability Research Council, San Antonio, 2017
14 A Farzampour, M Eatherton. Parametric study on butterfly-shaped shear links with various geometries. In: The 11th National Conference on Earthquake Engineering. Los Angles: Earthquake Engineering Research Institute, 2018
15 A Farzampour, M Eatherton. Investigating limit states for butterfly-shaped and straight shear links. In: The 16th European Conference on Earthquake Engineering. Thessaloniki: The European Association for Earthquake Engineering, 2018
16 American Institute of Steel Construction. AISC 341–16, Seismic Provisions for Structural Steel Buildings, 2016
17 A Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. 4th ed. Berkeley: Prentice Hall, 2012
18 C Lee, S Kim, D Kim, J K Ryu, Y Ju. Numerical and experimental analysis of combined behavior of shear type friction damper and non-uniform strip damper for multi-level seismic protection. Engineering Structures, 2016, 114: 75–92
https://doi.org/10.1016/j.engstruct.2016.02.007
19 D A Teruna, T Majid, B Budiono. Experimental study of hysteretic steel damper for energy dissipation capacity. Advances in Civil Engineering, 2015, 2015: 1–12
https://doi.org/10.1155/2015/631726
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed