Three different structural engineering designs were investigated to determine optimum design variables, and then to estimate design parameters and the main objective function of designs directly, speedily, and effectively. Two different optimization operations were carried out: One used the harmony search (HS) algorithm, combining different ranges of both HS parameters and iteration with population numbers. The other used an estimation application that was done via artificial neural networks (ANN) to find out the estimated values of parameters. To explore the estimation success of ANN models, different test cases were proposed for the three structural designs. Outcomes of the study suggest that ANN estimation for structures is an effective, successful, and speedy tool to forecast and determine the real optimum results for any design model.
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(6): 1441-1452.
Gebrail BEKDAŞ, Melda YÜCEL, Sinan Melih NIGDELI. Estimation of optimum design of structural systems via machine learning. Front. Struct. Civ. Eng., 2021, 15(6): 1441-1452.
averaging of absolute value of difference between actual and predicted results for all samples/ margin of deviation
mean squared error
MSE
average value of squared of deviation amount of estimations from actual values/ errors for n samples/ magnified error
root mean squared error
RMSE
root of mean squared error value/measure of distance between actual and predicted values
Tab.1
case
application
FW
HMCR
iteration number
population number
1
comparison of FW-HMCR
0.05–1 by increasing 0.05
0.05–1 by increasing 0.05
20000
30
2
comparison of iteration-population numbers
0.05
0.5
[5,50,100,500,1000 and 2500–40000 by increasing 2500]
[3 and 5–40 by increasing 5]
3
ANN training and estimation process
values of best choices in terms of minimum objective functions by comparing cases 1 and 2 as unique to each optimization model (unselected parameters have the same values in other cases)
Tab.2
Fig.1
Fig.2
(cm2)
(cm2)
Minf(v) (cm3)
mean of volume (cm3)
Std. Dev. of volume
HMCR
FW
0.7885
0.4087
263.8959
263.9033
0.0058
0.55
0.05
Tab.3
Fig.3
(cm2)
(cm2)
Minf(v) (cm3)
mean of volume
Std. Dev. of volume
iterationnumber
populationNumber
0.7886
0.4083
263.8959
263.8985
0.0031
25000
15
Tab.4
Fig.4
parameter
load
HS optimization result
ANN estimation
error calculations for HS
average
RMSE
MAE
MSE
A1 = A3
1.68
0.6629
0.6622
0.0007
0.0044
4.95e–05
0.007
2.37
0.9348
0.9309
0.0039
0.92
0.362
0.3636
–0.0016
0.04
0.016
0.0154
0.0006
2.81
1
0.9849
0.0151
A2
1.68
0.3418
0.3437
–0.0019
0.0123
3.62e394
0.019
2.37
0.4832
0.4944
–0.0113
0.92
0.1899
0.1851
0.0048
0.04
0.0075
0.0105
–0.0031
2.81
0.9626
1.0032
–0.0406
Minf(v)
1.68
221.6734
221.6746
–0.0012
0.0662
8.30e226
0.0911
2.37
312.7167
312.6713
0.0454
0.92
121.3934
121.3996
–0.0062
0.04
5.2804
5.4004
–0.1200
2.81
379.1044
378.9463
0.1581
Tab.5
Fig.5
property
parameter
notation
value/limit
unit
design constants
elasticity modulus
Es
10000
ksi
weight per unit of volume of bars
Ρ
0.1
lb/in3
design variables
section areas
0.1–35
in2
design constraints
displacements for whole nodes in all directions
δ
±2
in
tensile/compression stresses for each bar
σ
±25
ksi
Tab.6
Fig.6
parameter
value
(in2)
23.9436
(in2)
0.1
(in2)
25.2889
(in2)
14.053
(in2)
0.1
(in2)
1.9785
(in2)
12.5091
(in2)
12.9271
(in2)
20.1141
(in2)
0.1
(lb)
4680.8384
mean of weight
4693.8804
Std. Dev. of weight
4.9906
HMCR
0.25
FW
0.05
Tab.7
Fig.7
parameter
value
(in2)
24.1027
(in2)
0.1
(in2)
26.0599
(in2)
14.0816
(in2)
0.1
(in2)
2.0014
(in2)
12.258
(in2)
12.5361
(in2)
20.0621
(in2)
0.1
(lb)
4680.852
mean of weight
4694.1209
Std. Dev. of weight
4.5771
iteration number
35000
population number
35
Tab.8
Fig.8
parameter
P1 (kip)
P2 (kip)
HS optimization result
ANN estimation
error calculations for HS
average
RMSE
MAE
MSE
A1
143
48
22.5921
22.3536
0.2385
0.7326
0.7398
0.8601
150.4
43.5
27.6794
26.6037
1.0758
154
50.5
24.151
24.5216
–0.3707
145
42
24.401
25.8323
–1.4313
157.25
55.25
22.8998
23.4463
–0.5465
A2
143
48
0.1
0.1254
–0.0254
0.0206
0.0006
0.0247
150.4
43.5
0.1
0.1419
–0.0419
154
50.5
0.1
0.0995
0.0005
145
42
0.1
0.1143
–0.0143
157.25
55.25
0.1
0.121
–0.021
A3
143
48
23.9015
24.3014
–0.3999
0.3782
0.1464
0.3826
150.4
43.5
26.4858
26.764
–0.2782
154
50.5
26.4822
26.1031
0.3792
145
42
26.4865
26.0293
0.4572
157.25
55.25
26.2506
25.8739
0.3767
A4
143
48
12.7495
136,382
–0.8887
0.4566
0.3336
0.5776
150.4
43.5
15.6635
155,987
0.0649
154
50.5
14.1376
149,142
–0.7766
145
42
15.5657
150,464
0.5193
157.25
55.25
14.6318
146,655
–0.0337
A5
143
48
0.1
0.094
0.006
0.0071
7.01e–05
0.0084
150.4
43.5
0.1
0.1146
–0.0146
154
50.5
0.1
0.1091
–0.0041
145
42
0.1
–0.009
–0.009
157.25
55.25
0.1
0.0982
0.0018
A6
143
48
1.9183
1.9275
–0.0092
0.0361
0.0017
0.0415
150.4
43.5
1.7466
1.8007
–0.0541
154
50.5
1.9958
2.0378
–0.0419
145
42
1.72
1.7802
–0.0602
157.25
55.25
2.1835
2.1984
–0.0149
A7
143
48
11.9171
11.8335
0.0836
0.1305
0.0411
0.2027
150.4
43.5
12.2539
12.2239
0.0299
154
50.5
12.6766
12.7335
–0.0569
145
42
11.522
11.9607
–0.4386
157.25
55.25
12.9318
12.9754
–0.0436
A8
143
48
12.2143
12.046
0.1683
0.2253
0.08
0.2829
150.4
43.5
15.1782
15.4772
–0.299
154
50.5
13.5386
13.4783
0.0603
145
42
14.8597
14.936
–0.0763
157.25
55.25
11.8532
12.3758
–0.5226
A9
143
48
19.774
19.2167
0.5573
0.5299
0.3321
0.5762
150.4
43.5
21.542
22.1308
–0.5889
154
50.5
21.7187
21.1551
0.5636
145
42
21.4216
21.3008
0.1208
157.25
55.25
21.4534
20.6344
0.819
A10
143
48
0.1
0.0784
0.0216
0.0168
0.0004
0.0205
150.4
43.5
0.1
0.0896
0.0104
154
50.5
0.1
0.1082
–0.0082
145
42
0.1
0.0622
0.0378
157.25
55.25
0.1
0.106
–0.006
Minf(w) (lb)
143
48
4449.3922
4449.0023
0.0216
1.2065
1.841
1.3469
150.4
43.5
5082.3537
5083.7904
0.0104
154
50.5
4856.2858
4857.0534
–0.0082
145
42
4900.2784
4898.137
0.0378
157.25
55.25
4741.1288
4742.4228
–0.006
Tab.9
Fig.9
h (in)
b (in)
As (in2)
Minf(c) ($)
mean of cost
Std. Dev. of cost
HMCR
FW
34.0000
8.5000
6.3200
359.2080
360.1468
0.8707
0.35
0.35
Tab.10
Fig.10
h (in)
b (in)
As (in2)
Minf(c) ($)
mean of cost
Std. Dev. of cost
iteration number
population number
34.0000
8.5000
6.3200
359.2080
359.2463
0.0400
37500
40
Tab.11
Fig.11
Fig.12
parameter
L (ft)
MDL (in·kip)
MLL (in·kip)
HS optimization result
ANN estimation
error calculations for HS
average
RMSE
MAE
MSE
h (in)
16.25
1250
2000
32.0000
30.9730
1.0270
0.4798
0.3643
0.6036
18.6
2700
1450
33.0000
33.7684
–0.7684
19.45
1400
2800
34.0000
33.7005
0.2995
14.5
1750
1600
30.0000
30.2945
–0.2945
20.10
2325
2250
34.0000
34.0098
–0.0098
b (in)
16.25
1250
2000
8.0000
7.7671
0.2329
0.1139
0.0186
0.1363
18.6
2700
1450
8.3954
8.4178
–0.0224
19.45
1400
2800
8.5139
8.4368
0.0770
14.5
1750
1600
7.5000
7.6638
–0.1638
20.10
2325
2250
8.5000
8.5731
–0.0731
As (in)
16.25
1250
2000
5.2800
5.6157
–0.3357
0.1667
0.0356
0.1886
18.6
2700
1450
6.3200
6.1875
0.1325
19.45
1400
2800
6.6000
6.7408
–0.1408
14.5
1750
1600
6.0000
5.8518
0.1482
20.10
2325
2250
7.1100
7.0336
0.0764
Minf(w) (lb)
16.25
1250
2000
165.8322
165.9773
–0.1451
0.3660
0.2650
0.5148
18.6
2700
1450
216.8218
216.8772
–0.0554
19.45
1400
2800
237.0143
238.0555
–1.0413
14.5
1750
1600
148.6500
148.5034
0.1466
20.10
2325
2250
254.8233
254.3817
0.4417
Tab.12
1
J H Holland. Adaptation in Natural and Artificial Systems. Michigan: University of Michigan Press, 1975
2
R Storn, K Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11( 4): 341– 359 https://doi.org/10.1023/A:1008202821328
J Kennedy, R C Eberhart. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks No. IV. Perth: IEEE Conference Publication, 1995, 1942– 1948
6
X Li. A new intelligent optimization method-artificial fish school algorithm. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2003
7
D Karaboga. An Idea Based on Honeybee Swarm for Numerical Optimization, vol. 200. Technical Report TR06. 2005
8
X S Yang, S Deb. Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore: IEEE, 2009, 210– 214
9
X S Yang. Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Berlin: Springer, 2012, 240– 249
R A Formato. Central force optimization: A new nature inspired computational framework for multidimensional search and optimization. Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Berlin: Springer, 2007, 221– 238
16
E Rashedi, H Nezamabadi-Pour, S Saryazdi. GSA: A gravitational search algorithm. Information Sciences, 2009, 179( 13): 2232– 2248 https://doi.org/10.1016/j.ins.2009.03.004
17
A Kaveh, T Bakhshpoori. Water evaporation optimization: A novel physically inspired optimization algorithm. Computers & Structures, 2016, 167 : 69– 85 https://doi.org/10.1016/j.compstruc.2016.01.008
18
G Quaranta, A Fiore, G C Marano. Optimum design of prestressed concrete beams using constrained differential evolution algorithm. Structural and Multidisciplinary Optimization, 2014, 49( 3): 441– 453 https://doi.org/10.1007/s00158-013-0979-5
19
H Ozbasaran, T Yilmaz. Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints. Journal of Constructional Steel Research, 2018, 143 : 119– 130 https://doi.org/10.1016/j.jcsr.2017.12.022
20
M Yücel, G Bekdaş, S M Ni̇gdeli̇. Minimizing the weight of cantilever beam via metaheuristic methods by using different population-iteration combinations. WSEAS Transactions on Computers, 2020, 19 : 69– 77 https://doi.org/10.37394/23205.2020.19.10
21
M N Rabi’, S T Yousif. Optimum cost design of reinforced concrete columns using genetic algorithms. Al Rafdain Engineering Journal (New York), 2014, 22( 1): 112– 141
22
G F de Medeiros, M Kripka. Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 2014, 59 : 185– 194 https://doi.org/10.1016/j.engstruct.2013.10.045
23
I Aydogdu, A Akin. Biogeography based CO2 and cost optimization of RC cantilever retaining walls. In: 17th International Conference on Structural Engineering. Paris: World Academy of Science, Engineering and Technology, 2015, 1480– 1485
24
N A Jasim, A M Al-Yaqoobi. Optimum design of tied back retaining wall. Open Journal of Civil Engineering, 2016, 6( 2): 139– 155 https://doi.org/10.4236/ojce.2016.62013
25
F A Mohammad, H G Ahmed. Optimum design of reinforced concrete cantilever retaining walls according to Eurocode 2 (EC2). Athens Journal of Technology & Engineering, 2018, 5( 3): 277– 296 https://doi.org/10.30958/ajte.5-3-4
26
A Kaveh, K B Hamedani, A Zaerreza. A set theoretical shuffled shepherd optimization algorithm for optimal design of cantilever retaining wall structures. Engineering with Computers, 2021, 37( 4): 3265– 3282 https://doi.org/10.1007/s00366-020-00999-9
27
A E Kayabekir, G Bekdaş, S M Nigdeli. Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures: Emerging Research and Opportunities. Hershey, PA: IGI Global, 2020, 161– 182
28
X Chen, S Liu, S He. The optimization design of truss based on ant colony optimal algorithm. In: Sixth International Conference on Natural Computation, vol. 2. Yantai: IEEE, 720– 723
29
S O Degertekin, M S Hayalioglu. Sizing truss structures using teaching-learning-based optimization. Computers & Structures, 2013, 119 : 177– 188 https://doi.org/10.1016/j.compstruc.2012.12.011
30
G Bekdaş, S M Nigdeli, X S Yang. Sizing optimization of truss structures using flower pollination algorithm. Applied Soft Computing, 2015, 37 : 322– 331 https://doi.org/10.1016/j.asoc.2015.08.037
31
A Mortazavi, V Toğan, A Nuhoğlu. Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer. Journal of Civil Engineering and Management, 2017, 23( 8): 985– 1001 https://doi.org/10.3846/13923730.2017.1348982
32
M Salar, B Dizangian. Sizing optimization of truss structures using ant lion optimizer. In: 2nd International Conference on Civil Engineering, Architecture and Urban Management in Iran. Tehran: Tehran University, 2019
33
Yücel M, Bekdaş G, Nigdeli S M. Prediction of optimum 3-bar truss model parameters with an ANN model. In: Proceedings of 6th International Conference on Harmony Search, Soft Computing and Applications (ICHSA 2020). Singapore: Springer, 2021, 317–324
34
D Prayogo, G Gaby, B H Wijaya, F T Wong. Reliability-based design with size and shape optimization of truss structure using symbiotic organisms search. IOP Conference Series: Earth and Environmental Science, 2020, 506 : 012047–
35
A Mortazavi. Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm. Advances in Engineering Software, 2020, 142 : 102790– https://doi.org/10.1016/j.advengsoft.2020.102790
36
A Kaveh, S Mohammadi, O K Hosseini, A Keyhani, V R Kalatjari. Optimum parameters of tuned mass dampers for seismic applications using charged system search. Civil Engineering (Shiraz), 2015, 39( C1): 21– 40
37
W Shi, L Wang, Z Lu, Q Zhang. Application of an artificial fish swarm algorithm in an optimum tuned mass damper design for a pedestrian bridge. Applied Sciences (Basel, Switzerland), 2018, 8( 2): 175– https://doi.org/10.3390/app8020175
38
G Bekdaş, S M Nigdeli, X S Yang. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 2018, 159 : 89– 98 https://doi.org/10.1016/j.engstruct.2017.12.037
39
M Yucel, G Bekdaş, S M Nigdeli, S Sevgen. Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 2019, 26 : 100847– https://doi.org/10.1016/j.jobe.2019.100847
40
S Soheili, H Zoka, M Abachizadeh. Tuned mass dampers for the drift reduction of structures with soil effects using ant colony optimization. Advances in Structural Engineering, 2021, 24( 4): 771– 783
41
M Yucel, S Öncü-Davas, S M Nigdeli, G Bekdaş, S. Sevgen Estimating of analysis results for structures with linear base isolation systems using artificial neural network model. International Journal of Control Systems and Robotics, 2018, 3
42
V M Nguyen-Thanh, X Zhuang, T Rabczuk. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics. A, Solids, 2020, 80 : 103874– https://doi.org/10.1016/j.euromechsol.2019.103874
43
E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362 : 112790– https://doi.org/10.1016/j.cma.2019.112790
44
D W Abueidda, S Koric, N A Sobh. Topology optimization of 2D structures with nonlinearities using deep learning. Computers & Structures, 2020, 237 : 106283– https://doi.org/10.1016/j.compstruc.2020.106283
45
V Minh Nguyen-Thanh, L Trong Khiem Nguyen, T Rabczuk, X Zhuang. A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network. International Journal for Numerical Methods in Engineering, 2020, 121( 21): 4811– 4842 https://doi.org/10.1002/nme.6493
46
A Kaveh, A D Eslamlou, S M Javadi, N G Malek. Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 2021, 232( 3): 921– 931 https://doi.org/10.1007/s00707-020-02878-2
47
H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59( 2): 433– 456
48
X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87 : 104225– https://doi.org/10.1016/j.euromechsol.2021.104225
49
S Koziel, X S Yang. Computational Optimization, Methods and Algorithms. Berlin: Springer-Verlag, 2011
50
W S Sarle. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference. Cary: SAS Institute, 1994, 1538– 1550
51
Mathworks MATLAB. Matlab 2018a, Neural Net Fitting, 2018
52
Y Fujita, K Lind, T J Williams. Computer Applications in the Automation of Shipyard Operation and Ship Design, vol. 2. New York: Elsevier, 1974, 327– 338
53
L A Jr Schmit, B Farshi. Some approximation concepts for structural synthesis. AIAA Journal, 1974, 12( 5): 692– 699 https://doi.org/10.2514/3.49321