Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (4): 414-433   https://doi.org/10.1007/s11709-021-0797-6
  本期目录
Optimal CNN-based semantic segmentation model of cutting slope images
Mansheng LIN1, Shuai TENG1, Gongfa CHEN1(), Jianbing LV1, Zhongyu HAO2
1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
2. JSTI Group Guangdong Inspection and Certification Co. Ltd, Nanjing 210000, China
 全文: PDF(11002 KB)   HTML
Abstract

This paper utilizes three popular semantic segmentation networks, specifically DeepLab v3+, fully convolutional network (FCN), and U-Net to qualitively analyze and identify the key components of cutting slope images in complex scenes and achieve rapid image-based slope detection. The elements of cutting slope images are divided into 7 categories. In order to determine the best algorithm for pixel level classification of cutting slope images, the networks are compared from three aspects: a) different neural networks, b) different feature extractors, and c) 2 different optimization algorithms. It is found that DeepLab v3+ with Resnet18 and Sgdm performs best, FCN 32s with Sgdm takes the second, and U-Net with Adam ranks third. This paper also analyzes the segmentation strategies of the three networks in terms of feature map visualization. Results show that the contour generated by DeepLab v3+ (combined with Resnet18 and Sgdm) is closest to the ground truth, while the resulting contour of U-Net (combined with Adam) is closest to the input images.

Key wordsslope damage    image recognition    semantic segmentation    feature map    visualizations
收稿日期: 2021-10-05      出版日期: 2022-08-09
Corresponding Author(s): Gongfa CHEN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(4): 414-433.
Mansheng LIN, Shuai TENG, Gongfa CHEN, Jianbing LV, Zhongyu HAO. Optimal CNN-based semantic segmentation model of cutting slope images. Front. Struct. Civ. Eng., 2022, 16(4): 414-433.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0797-6
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I4/414
Fig.1  
Fig.2  
property 1st AC 2nd AC 3rd AC 4th AC
padding size 0 6 12 18
dilation factor (DF) 1 6 12 18
old filler size (OFZ) 1×1 3×3 3×3 3×3
new filler size (NFZ) 1×1 11×11 23×23 35×35
new convolution kernel
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
LN a) w (l)
LB b) 0.6390
VT c) 0.1292
VD d) 1.3671
sky 2.8740
RW e) 0.5869
road 1
signs 20.5913
Tab.2  
model precision (PR)
LB VT VD sky RW road signs MPR
U-Net (Sgdm) NaN 75.57 NaN NaN NaN NaN NaN 10.80
U-Net (Adam) 47.51 97.25 22.84 34.73 22.05 13.00 21.29 36.95
FCN (32s Sgdm) 74.72 98.86 35.77 92.52 91.17 91.67 45.82 75.79
FCN (32s Adam) 48.59 97.49 13.29 NaN 32.57 NaN NaN 27.42
DeepLab v3+ (Resnet18 Sgdm) 81.42 98.99 38.30 88.27 82.55 85.06 59.52 76.30
DeepLab v3+ (Resnet18 Adam) 76.13 98.66 27.09 34.32 63.46 0 NaN 42.81
Tab.3  
model per-class pixel accuracy (PA)
LB VT VD sky RW road signs MPA GPA
U-Net (Sgdm) 0 100 0 0 0 0 0 14.29 75.57
U-Net (Adam) 70.95 88.71 48.30 46.54 4.64 0.23 24.74 40.59 79.57
FCN (32s Sgdm) 93.81 86.46 91.68 93.17 96.51 92.61 77.66 90.27 88.23
FCN (32s Adam) 94.08 85.98 19.65 0 3.05 0 0 28.96 79.29
DeepLab v3+ (Resnet18 Sgdm) 92.89 89.54 82.70 99.42 98.35 97.18 79.14 91.32 90.32
DeepLab v3+ (Resnet18 Adam) 86.57 85.91 84.08 86.29 84.32 0 0 61.02 84.00
Tab.4  
model intersection of union (IoU)
LB VT VD sky RW road signs MIoU WIoU
U-Net (Sgdm) 0 75.57 0 0 0 0 0 10.80 57.11
U-Net (Adam) 39.78 86.54 18.35 24.82 3.99 0.23 12.92 26.66 72.15
FCN (32s Sgdm) 71.21 85.61 34.64 86.65 88.26 85.42 40.48 70.32 81.79
FCN (32s Adam) 47.15 84.11 8.61 0 2.87 0 0 20.39 70.74
DeepLab v3+ (Resnet18 Sgdm) 76.64 88.73 35.46 87.81 81.43 83.01 51.45 72.08 84.71
DeepLab v3+ (Resnet18 Adam) 68.09 84.92 25.77 32.55 56.76 0 0 38.30 77.09
Tab.5  
model mean boundary F1 score of class (MBFSoC)
LB VT VD sky RW road signs MBFSoDS
U-Net (Sgdm) NaN 45.11 NaN NaN NaN NaN NaN 6.44
U-Net (Adam) 46.10 61.48 27.12 12.27 11.38 9.38 43.59 30.19
FCN (32s Sgdm) 55.33 61.48 15.93 54.55 64.02 52.61 9.36 44.75
FCN (32s Adam) 29.48 49.92 8.34 NaN 3.68 NaN NaN 13.06
DeepLab v3+ (Resnet18 Sgdm) 65.03 70.81 24.68 29.61 35.79 39.29 32.12 42.48
DeepLab v3+ (Resnet18 Adam) 59.47 65.89 20.98 20.04 29.86 0 NaN 28.03
Tab.6  
Fig.9  
label pc a) ipc b) real-world objects
LB 92014213 599270400 concrete lattice beam, concrete ladder, concrete drainage channel
VT 508610045 671155200 grass, trees
VD 31215511 448588800 soil exposed after vegetation disappearance
Sky 2855823 78796800 sky
RW 29833466 184550400 concrete and marble retaining walls
Road 6273698 62208000 roads, highway guardrails, road drains, traffics
Signs 126202 20044800 road signs
Tab.7  
model PET
U-Net (Sgdm) 8.85
U-Net (Adam) 26.26
FCN (32s Sgdm) 4.10
FCN (32s Adam) 4.77
DeepLab v3+ (Resnet18 Sgdm) 1.56
DeepLab v3+ (Resnet18 Adam) 3.09
Tab.8  
Fig.10  
model false positive rate (FPR)
LB VT VD sky RW road signs MPFR GFPR
U-Net (Adam) 13.15 7.76 5.98 0.85 0.57 0.03 0.08 4.06 20.43
FCN (32s Sgdm) 5.32 3.08 6.03 0.07 0.33 0.18 0.08 2.16 11.77
DeepLab v3+ (Resnet18 Sgdm) 3.56 2.81 4.88 0.13 0.72 0.37 0.05 1.79 9.68
Tab.9  
Situation K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 mean origin
GPA 91.92 93.09 94.82 95.47 91.38 94.67 86.61 87.08 88.64 91.60 91.53 91.32
MIoU 69.34 68.24 75.96 77.77 70.68 73.31 64.35 65.25 62.19 67.70 69.42 72.08
Tab.10  
DeepLab v3+ (Resnet18) index
MPR MPA GPA MIoU WIoU MBFSoDS PET
Sgdm and PCD 76.30 91.32 90.32 72.08 84.71 42.48 1.56
AdeDelta and PCD 13.72 40.44 78.79 20.40 73.96 22.91 3.67
AdeDelta and cosine decay 13.29 30.25 70.04 16.43 65.93 17.68 1.89
Tab.11  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Model Index
MPR MPA GPA MIoU WIoU MBFSoDS PET
DeepLab v3+ (Resnet18 Sgdm) 76.30 91.32 90.32 72.08 84.71 42.48 1.56
DeepLab v3+ (Resnet18 Adam) 42.81 61.02 84.00 38.30 77.09 28.03 3.09
DeepLab v3+ (Resnet50 Sgdm) 77.61 91.90 91.63 73.71 86.16 47.56 2.87
DeepLab v3+ (Resnet50 Adam) 32.88 42.92 82.60 28.18 75.36 21.87 15.12
Tab.12  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
  
  
  
  
  
1 Z Chen. Soil Slope Stability Analysis––Principle, Methods and Programs. Beijing: China Water & Power Press, 2003 (in Chinese)
2 C I Wu, H Y Kung, C H Chen, L C Kuo. An intelligent slope disaster prediction and monitoring system based on WSN and ANP. Expert Systems with Applications, 2014, 41( 10): 4554–4562
https://doi.org/10.1016/j.eswa.2013.12.049
3 J ShuJ Zhang J Wu. Research on highway slope disaster identification based on deep convolution neural network. Highway Traffic Technology, 2017, 13(10): 70–74 (in Chinese)
4 J Wu. Feature learning of highway image and detection of slope failure. Thesis for the Master’s Degree. Beijing: Beijing University of Posts and Telecommunications, 2018 (in Chinese)
5 J Xu, C Gui, Q Han. Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 2020, 35( 10): 1160–1174
https://doi.org/10.1111/mice.12563
6 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59( 2): 433–456
https://doi.org/10.32604/cmc.2019.06660
7 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59( 1): 345–359
https://doi.org/10.32604/cmc.2019.06641
8 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362 : 112790
https://doi.org/10.1016/j.cma.2019.112790
9 H ZhouY ChenR Tian. Distance prediction of slope-foot landslide in southwest of China based on GA-BP neural network. In: 2019 the 6th Annual International Conference on Material Engineering and Application. Guangzhou: IOP Publishing, 2020
10 Y XingJ WangX LiR LiuJ Gao. Slope stability prediction model based on GA-SVM. In: 2010 International Conference on Educational and Information Technology. Chongqing: IEEE, 2010
11 H M Lin, S K Chang, J H Wu, C H Juang. Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area (China): Pre- and post-earthquake investigation. Engineering Geology, 2009, 104( 3-4): 280–289
https://doi.org/10.1016/j.enggeo.2008.11.007
12 Y Xia, B Chen, S Weng, Y Q Ni, Y L Xu. Temperature effect on vibration properties of civil structures: A literature review and case studies. Journal of Civil Structural Health Monitoring, 2012, 2( 1): 29–46
https://doi.org/10.1007/s13349-011-0015-7
13 X Yao. Evolutionary artificial neural networks. International Journal of Neural Systems, 1993, 4( 3): 203–222
https://doi.org/10.1142/S0129065793000171
14 Y Lin, Z Nie, H Ma. Structural damage detection with automatic feature-extraction through deep learning. Computer-Aided Civil and Infrastructure Engineering, 2017, 32( 12): 1025–1046
https://doi.org/10.1111/mice.12313
15 K Zhong, S Teng, G Liu, G Chen, F Cui. Structural damage features extracted by convolutional neural networks from mode shapes. Applied Sciences (Basel, Switzerland), 2020, 10( 12): 4247–4262
https://doi.org/10.3390/app10124247
16 S Teng, Z Liu, G Chen, L Cheng. Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network. Applied Sciences (Basel, Switzerland), 2021, 11( 2): 813–825
https://doi.org/10.3390/app11020813
17 O Ghorbanzadeh, S R Meena, T Blaschke, J Aryal. UAV-based slope failure detection using deep-learning convolutional neural networks. Remote Sensing, 2019, 11( 17): 2046–2069
https://doi.org/10.3390/rs11172046
18 V Badrinarayanan, A Kendall, R Cipolla. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39( 12): 2481–2495
https://doi.org/10.1109/TPAMI.2016.2644615
19 O Ronneberger, P Fischer, T Brox. U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer, 2015, 234–241
20 L C Chen, Y Zhu, G Papandreou, F Schroff, H Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: European Conference on Computer Vision (ECCV). Munich: Springer, 2018, 833–851
21 E Shelhamer, J Long, T Darrell. Fully Convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39( 4): 640–651
https://doi.org/10.1109/TPAMI.2016.2572683
22 Y Narazaki, V Hoskere, T A Hoang, Y Fujino, A Sakurai, B F Jr Spencer. Vision ‐ based automated bridge component recognition with high ‐ level scene consistency. Computer-Aided Civil and Infrastructure Engineering, 2020, 35( 5): 465–482
https://doi.org/10.1111/mice.12505
23 J Liu, X Yang, S Lau, X Wang, S Luo, V C S Lee, L Ding. Automated pavement crack detection and segmentation based on two-step convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 2020, 35( 11): 1291–1305
https://doi.org/10.1111/mice.12622
24 C V Dung, L D Anh. Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 2019, 99 : 52–58
https://doi.org/10.1016/j.autcon.2018.11.028
25 S Teng, G Chen, P Gong, G Liu, F Cui. Structural damage detection using convolutional neural networks combining strain energy and dynamic response. Meccanica, 2020, 55( 4): 945–959
https://doi.org/10.1007/s11012-019-01052-w
26 C RojahnD R BonnevilleN D QuadriM T PhippsR A Ranous J E RussellW E StaehlinZ Turner. Postearthquake Safety Evaluation of Buildings. Redwood City, CA: Applied Technology Council, 2005
27 H Noh, S Hong, B Han. Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV). Las Condes: IEEE, 2015, 1520–1528
28 C Dong, C C Loy, X Tang. Accelerating the super-resolution convolutional neural network. In: European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016, 391–407
29 V M Nguyen-Thanh, C Anitescu, N Alajlan, T Rabczuk, X Zhuang. Parametric deep energy approach for elasticity accounting for strain gradient effects. Computer Methods in Applied Mechanics and Engineering, 2021, 386 : 114096
https://doi.org/10.1016/j.cma.2021.114096
30 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87 : 104225
https://doi.org/10.1016/j.euromechsol.2021.104225
31 K He, X Zhang, S Ren, J Sun. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: IEEE, 2016, 770–778
32 L C Chen, G Papandreou, I Kokkinos, K Murphy, A L Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40( 4): 834–848
https://doi.org/10.1109/TPAMI.2017.2699184
33 Y J Cha, W Choi, O Büyüköztürk. Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 2017, 32( 5): 361–378
https://doi.org/10.1111/mice.12263
34 K He, X Zhang, S Ren, J Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). Las Condes: IEEE, 2015, 1026–1034
35 S IoffeC Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015, arXiv:1502.03167
36 N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15( 1): 1929–1958
37 G CsurkaD LarlusF Perronnin. What is a good evaluation measure for semantic segmentation? In: Proceedings of the British Machine Vision Conference. Bristol: BMVA, 2013
38 D Randall Wilson, T R Martinez. The need for small learning rates on large problems. In: International Joint Conference on Neural Networks. Washington, D.C.: IEEE, 2001, 115–119
39 A KroghJ A Hertz. A Simple Weight Decay Can Improve Generalization. In: Proceedings of the 4th International Conference on Neural Information Processing Systems (NIPS). Denver: MIT Press, 1991
40 R F David Eigen. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: IEEE International Conference on Computer Vision (ICCV). Las Condes: IEEE, 2015,
41 Y Zhang, Y Yang. Cross-validation for selecting a model selection procedure. Journal of Econometrics, 2015, 187( 1): 95–112
https://doi.org/10.1016/j.jeconom.2015.02.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed