Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2023, Vol. 17 Issue (12): 1849-1870   https://doi.org/10.1007/s11709-023-0020-z
  本期目录
Seismic performance of HWBBF considering different design methods and structural heights
Yulong FENG1, Zhi ZHANG2(), Zuanfeng PAN3
1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2. Thornton Tomasetti, New York, NY 10271, USA
3. College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(15399 KB)   HTML
Abstract

Previous research has shown that using buckling-restrained braces (BRBs) at hinged wall (HW) base (HWBB) can effectively mitigate lateral deformation of steel moment-resisting frames (MRFs) in earthquakes. Force-based and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods, in terms of design steps, advantages/disadvantages, and structure responses. In addition, this paper investigates the building height below which the HW seismic moment demand can be properly controlled. First, 3-story, 9-story, and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs. Secondly, HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods, called HWFs and HWBBFs, respectively. Thirdly, nonlinear time history analyses are conducted to compare the structural responses of the MRFs, HWBBFs and HWFs in earthquakes. The results show the following. 1) HW seismic force demands increase as structural height increases, which may lead to uneconomical HW design. The HW seismic moment demand can be properly controlled when the building is lower than nine stories. 2) The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process, as well as better achieving the design target displacement.

Key wordshinged wall    moment-resisting frame    seismic design    displacement-based design    nonlinear time-history analysis
收稿日期: 2022-12-14      出版日期: 2024-02-05
Corresponding Author(s): Zhi ZHANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2023, 17(12): 1849-1870.
Yulong FENG, Zhi ZHANG, Zuanfeng PAN. Seismic performance of HWBBF considering different design methods and structural heights. Front. Struct. Civ. Eng., 2023, 17(12): 1849-1870.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-023-0020-z
https://academic.hep.com.cn/fsce/CN/Y2023/V17/I12/1849
Fig.1  
Fig.2  
item MRF-3 HWF-3 HWBBF-3 MRF-9 HWF-9 HWBBF-9 MRF-20 HWF-20 HWBBF-20
story number 3 3 3 9 9 9 20 20 20
usage of HW no yes yes no yes yes no yes yes
usage of BRBs no no yes no no yes no no yes
Tab.1  
Ss S1 risk category site class seismic design category importance factor R
2.38 0.83 II D E 1 8
Tab.2  
Fig.3  
Fig.4  
Fig.5  
step parameter HWF-3 HWBBF-FB-3 HWF-9 HWBBF-FB-9 HWF-20 HWBBF-FB-20
1 existing MRFs MRF-3 from Ref. [31] MRF-3 from Ref. [31] MRF-9 from Ref. [31] MRF-9 from Ref. [31] MRF-20 from Ref. [31] MRF-20 from Ref. [31]
2 H 11.88 11.88 37.17 37.17 80.73 80.73
representative story 2 2 5 5 10 10
Cf (× 108 N) 2.72 2.72 6.17 6.17 6.97 6.97
3 λ 0.93 0.93 0.91 0.91 0.95 0.95
EIw (× 1011 N·m2) 0.44 0.44 10.35 10.35 49.92 49.92
B (m) 3.5 3.5 10 10 15 15
tw1) (m) 0.35 0.35 0.35 0.35 0.50 0.50
Ww 3) (× 103 kg/m) 3.06 3.06 8.75 8.75 18.75 18.75
4 β 5) 1.74 1.69 1.69
ks (× 1010 N·m/rad) 0.65 4.70 10.45
5 MW,b (× 107 N·m) 0.00 1.42 0.00 8.36 0.00 11.81
Vtol2) (kN) 2945 2938 5664 5664 4591 4591
VW 2) (kN) 397 1550 2361 3942 3448 3831
W 3) (kN) 14818 14818 47054 47054 68303 68303
Vtol/W 0.20 0.20 0.12 0.12 0.07 0.07
6 fy,BRB (MPa) 235 345 345
θy,s (%) 0.22 0.18 0.11
ABRB (× 10−3 m2) 17.24 24.23 22.81
Fy,BRB4) (kN) 4051 8359 7870
7 HBRB (m) 3.25 5.16 4.91
Tab.3  
step parameter HWBBF-DB-3 HWBBF-DB-9 HWBBF-DB-20
1 existing MRFs MRF-3 from Ref. [36] MRF-9 from Ref. [36] MRF-20 from Ref. [36]
2 target roof drift in DBE (%) 1 1 1
H (m) 11.88 37.17 80.73
utarget (m) 0.1188 0.3717 0.8073
3 ψ [0.33, 0.67, 1.00] [0.15, 0.25, 0.36, 0.47, 0.57, 0.68, 0.79, 0.89, 1.00] [0.07, 0.12, 0.17, 0.22, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00]
[M] (× 105 kg) [7.875 7.8755.200] [ 5.050 4.945 ? 4.945 5.350]9 ×9 [ 2.815 2.760 ? 2.760 2.920]20 ×20
δtarget (m) 0.0933 0.2639 0.4748
4 Ttarget (s) 0.50 1.18 2.03
5 HWBBF period curves see Fig.5 see Fig.5 see Fig.5
6 tw (m) 0.35 0.35 0.5
B (m) 8 12 17
EIw (× 1011 N·m2) 5.30 17.89 72.67
ks (× 1010 N·m/rad) 2.47 11.30 24.45
7 HBRB (m) 3.25 5.16 4.91
fy,BRB (MPa) 235 345 345
ABRB (× 10−3 m2) 12.54 40.48 41.55
8 My,s (× 107 N·m) 2.36 16.76 24.37
Fy,BRB (kN) 2948 13966 14334
θy,s (%) 0.095 0.148 0.100
β 0.55 2.35 2.72
λ 0.27 0.69 0.79
Tab.4  
Fig.6  
structure name T1 (s) T2 (s) T3 (s) T4 (s) effective modal mass ratio (%)
1st mode 2nd mode 3rd mode 4th mode
MRF-3 1.08 0.36 0.21 0.19 83.2 13.1 2.9 0.0
HWF-3 1.08 0.27 0.20 0.18 85.0 8.5 2.6 0.0
HWBBF-FB-3 0.78 0.26 0.20 0.18 81.0 11.0 2.5 0.0
HWBBF-DB-3 0.51 0.25 0.20 0.17 78.0 13.0 1.9 1.1
MRF-9 2.32 0.87 0.50 0.33 80.7 11.4 4.4 1.7
HWF-9 2.37 0.38 0.27 0.22 81.0 9.5 3.4 2.0
HWBBF-FB-9 1.50 0.36 0.27 0.22 76.9 11.5 4.4 2.3
HWBBF-DB-9 1.19 0.34 0.27 0.22 76.0 10.0 5.4 2.5
MRF-20 4.01 1.41 0.82 0.58 78.9 11.6 3.7 1.9
HWF-20 4.40 0.47 0.24 0.21 78.0 13.4 2.2 1.7
HWBBF-FB-20 2.55 0.43 0.24 0.21 73.7 16.2 2.7 2.1
HWBBF-DB-20 2.05 0.37 0.23 0.20 72.0 17.0 2.7 2.4
Tab.5  
Fig.7  
MRF name uniformly distributed load on beams (kN/m) axial load on leaning columns (kN)
floor roof floor roof
MRF-3, MRF-9 25 22 4644 4588
MRF-20 17 15 2580 2497
Tab.6  
ID earthquake scaling factor scaled PGA* (g)
EQ1 San Fernando 3.31 0.74
EQ2 San Fernando 4.89 0.95
EQ3 Imperial Valley-06 2.64 0.62
EQ4 Imperial Valley-06 2.10 0.73
EQ5 Superstition Hills-02 2.92 0.76
EQ6 Imperial Valley-06 1.98 0.75
EQ7 Landers 3.53 0.54
EQ8 Kobe_Japan 2.56 0.58
EQ9 Kobe_Japan 2.80 0.65
EQ10 Chi-Chi_China 1.39 0.55
Tab.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
number of stories earthquake intensity M0 (N·m) U0 (m) M1 (N·m) M2 (N·m) U2 (m) M1/M2
20 DBE 2.8 × 108 1.1 1.2 × 108 1.9 × 108 1.1 0.61
MCE 3.8 × 108 1.7 1.2 × 108 4.0 × 108 1.7 0.30
9 DBE 1.1 × 108 0.5 8.4 × 107 8.9 × 107 0.5 0.94
MCE 1.3 × 108 0.8 8.4 × 107 9.4 × 107 0.8 0.89
3 DBE 1.4 × 107 0.2 1.4 × 107 8.4 × 106 0.2 1.70
MCE 1.7 × 107 0.3 1.4 × 107 9.4 × 106 0.3 1.51
Tab.8  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
1 G Xia, W Shu, I Stanciulescu. Efficient analysis of shear wall-frame structural systems. Engineering Computations, 2019, 36(6): 2084–2110
https://doi.org/10.1108/EC-12-2018-0568
2 T Zeynep. Seismic performance, modeling, and failure assessment of reinforced concrete shear wall buildings. Dissertation for the Doctoral Degree. Los Angeles, CA: University of California, 2012
3 Y Kurama, S Pessiki, R Sause, L W Lu. Seismic behavior and design of ubonded post-tensioned precast concrete walls. PCI Journal, 1999, 44(3): 72–89
https://doi.org/10.15554/pcij.05011999.72.89
4 T Holden, J Restrepo, J B Mander. Seismic performance of precast reinforced and prestressed concrete walls. Journal of Structural Engineering, 2003, 129(3): 286–296
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286
5 R S Henry, S Aaleti, S Sritharan, J M Ingham. Concept and finite-element modeling of new steel shear connectors for self-centering wall systems. Journal of Engineering Mechanics, 2010, 136(2): 220–229
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000071
6 J I Restrepo, A Rahman. Seismic performance of self-centering structural walls incorporating energy dissipators. Journal of Structural Engineering, 2007, 133(11): 1560–1570
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1560
7 X L Lu, H Wu. Study on seismic performance of prestressed precast concrete walls through cyclic lateral loading test. Magazine of Concrete Research, 2017, 69(17): 878–891
https://doi.org/10.1680/jmacr.16.00363
8 H Cui, G Wu, J Zhang, J Xu. Experimental study on damage-controllable rocking walls with resilient corners. Magazine of Concrete Research, 2019, 71(21): 1113–1129
https://doi.org/10.1680/jmacr.18.00503
9 Z Zhang. Analytical investigation of inertial force-limiting floor anchorage system for seismic resistant building structures. Dissertation for the Doctoral Degree. Tucson: University of Arizona, 2017
10 B Alavi, H Krawinkler. Strengthening of moment-resisting frame structures against near-fault ground motion effects. Earthquake Engineering & Structural Dynamics, 2004, 33(6): 707–722
https://doi.org/10.1002/eqe.370
11 P Pan, S Wu, X Nie. A distributed parameter model of a frame pin-supported wall structure. Earthquake Engineering & Structural Dynamics, 2015, 44(10): 1643–1659
https://doi.org/10.1002/eqe.2550
12 Y Zhou, D Yao, Y Chen, Q Li. Upgraded parameter model of frame pin-supported wall structures. Structural Design of Tall and Special Buildings, 2021, 30(8): e1852
https://doi.org/10.1002/tal.1852
13 Z Qu, A Wada, S Motoyui, H Sakata, S Kishiki. Pin-supported walls for enhancing the seismic performance of building structures. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2075–2091
https://doi.org/10.1002/eqe.2175
14 T Sun, Y C Kurama, J Ou. Practical displacement-based seismic design approach for PWF structures with supplemental yielding dissipators. Engineering Structures, 2018, 172: 538–553
https://doi.org/10.1016/j.engstruct.2018.05.120
15 I Takewaki, H Akehashi. Comprehensive review of optimal and smart design of nonlinear building structures with and without passive dampers subjected to earthquake loading. Frontiers in Built Environment, 2021, 7: 631114
https://doi.org/10.3389/fbuil.2021.631114
16 H Akehashi, I Takewaki. Bounding of earthquake response via critical double impulse for efficient optimal design of viscous dampers for elastic−plastic moment frames. Japan Architectural Review, 2022, 5(2): 131–149
https://doi.org/10.1002/2475-8876.12262
17 H Akehashi, I Takewaki. Resilience evaluation of elastic−plastic high-rise buildings under resonant long-duration ground motion. Japan Architectural Review, 2022, 5(4): 373–385
https://doi.org/10.1002/2475-8876.12280
18 Y Feng, J Wu, X Chong, S Meng. Seismic lateral displacement analysis and design of an earthquake-resilient dual wall-frame system. Engineering Structures, 2018, 177: 85–102
https://doi.org/10.1016/j.engstruct.2018.09.059
19 Q Xie. State of the art of buckling-restrained braces in Asia. Journal of Constructional Steel Research, 2005, 61(6): 727–748
https://doi.org/10.1016/j.jcsr.2004.11.005
20 J Bai, H Chen, J Zhao, M Liu, S Jin. Seismic design and subassemblage tests of buckling-restrained braced RC frames with shear connector gusset connections. Engineering Structures, 2021, 234: 112018
https://doi.org/10.1016/j.engstruct.2021.112018
21 Y Feng, Z Zhang, Z Pan. Seismic performance of high-rise dual modular wall-frame systems. Engineering Structures, 2022, 264: 114458
https://doi.org/10.1016/j.engstruct.2022.114458
22 X Wang, T Wang, Z Qu. An experimental study of a damage-controllable plastic-hinge-supported wall structure. Earthquake Engineering & Structural Dynamics, 2018, 47(3): 594–612
https://doi.org/10.1002/eqe.2981
23 Q Jiang, Y Zhou, Y Feng, X Chong, H Wang, X Wang, Q Yang. Experimental study and numerical simulation of a reinforced concrete hinged wall with BRBs at the base. Journal of Building Engineering, 2022, 49: 104030
24 Z Zhang, R Fleischman, J Restrepo, G Guerrini, A Nema, D Zhang, U Shakya, G Tsampras, R Sause. Shake-table test performance of an inertial force-limiting floor anchorage system. Earthquake Engineering & Structural Dynamics, 2018, 47(10): 1987–2011
https://doi.org/10.1002/eqe.3047
25 L WiebeC Christopoulos. Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections. Journal of Earthquake Engineering, 2009, 13(Sup 1): 83−108
26 L Wiebe, C Christopoulos, R Tremblay, M Leclerc. Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: Concept, modelling, and low-amplitude shake table testing. Earthquake Engineering & Structural Dynamics, 2013, 42(7): 1053–1068
https://doi.org/10.1002/eqe.2259
27 T Li, J W Berman, R Wiebe. Parametric study of seismic performance of structures with multiple rocking joints. Engineering Structures, 2017, 146: 75–92
https://doi.org/10.1016/j.engstruct.2017.05.030
28 M Khanmohammadi, S Heydari. Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems. Engineering Structures, 2015, 100: 577–589
https://doi.org/10.1016/j.engstruct.2015.06.043
29 L Chen, R Tremblay, L Tirca. Modular tied eccentrically braced frames for improved seismic response of tall buildings. Journal of Constructional Steel Research, 2019, 155: 370–384
https://doi.org/10.1016/j.jcsr.2019.01.005
30 L Chen, R Tremblay, L Tirca. Practical seismic design procedure for steel braced frames with segmental elastic spines. Journal of Constructional Steel Research, 2019, 153: 395–415
https://doi.org/10.1016/j.jcsr.2018.10.010
31 M C Patricia, W B Jeffrey, N L Laura. Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates. Journal of Constructional Steel Research, 2015, 106: 198–208
https://doi.org/10.1016/j.jcsr.2014.12.017
32 J R Gaxiola-Camacho, H Azizsoltani, F J Villegas-Mercado, A Haldar. A novel reliability technique for implementation of performance-based seismic design of structures. Engineering Structures, 2017, 142: 137–147
https://doi.org/10.1016/j.engstruct.2017.03.076
33 R Abbasnia, A T Davoudi, M M Maddah. An improved displacement-based adaptive pushover procedure for the analysis of frame buildings. Journal of Earthquake Engineering, 2014, 18(7): 987–1008
https://doi.org/10.1080/13632469.2014.919242
34 G Rakesh, C Anil. Evaluation of modal and FEMA pushover analyses: SAC buildings. Earthquake Spectra, 2004, 20(1): 225–254
https://doi.org/10.1193/1.1646390
35 A E Zaghi, S Soroushian, A Itani, E M Maragakis, G Pekcan, M Mehrraoufi. Impact of column-to-beam strength ratio on the seismic response of steel MRFs. Bulletin of Earthquake Engineering, 2015, 13(2): 635–652
https://doi.org/10.1007/s10518-014-9634-9
36 Y Ohtori, R E Christenson, B F Jr Spencer, S J Dyke. Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 2004, 130(4): 366–385
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366
37 A GuptaH Krawinkler. Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Blume Earthquake Engineering Center, 1999
38 7-10 ASCE. Minimum Design Loads for Buildings and Other Structures. Farmington Hills, MI: American Concrete Institute, 2013
39 C Anil, R Goel. Direct Displacement-based design: Use of inelastic vs. elastic design spectra. Earthquake Spectra, 2001, 17(1): 47–63
https://doi.org/10.1193/1.1586166
40 M J N PriestleyG M CalviM J Kowalsky. Direct displacement-based seismic design of structures. In: Proceedings of the 2007 New Zealand Society for Earthquake Engineering (NZSEE) Annual Conference. 2007
41 N A Kalapodis, E V Muho, D E Beskos. Seismic design of plane steel MRFS, EBFS and BRBFS by improved direct displacement-based design method. Soil Dynamics and Earthquake Engineering, 2022, 153: 107111
https://doi.org/10.1016/j.soildyn.2021.107111
42 M Noruzvand, M Mohebbi, K Shakeri. Modified direct displacement-based design approach for structures equipped with fluid viscous damper. Structural Control and Health Monitoring, 2020, 27(1): e2465
https://doi.org/10.1002/stc.2465
43 M M Shalmaee, S Pourzeynali. A modal displacement-based design method for irregular building frames equipped with elastomeric bearings. Structures, 2022, 41: 541–552
https://doi.org/10.1016/j.istruc.2022.05.021
44 L D Sarno, G Manfredi. Seismic retrofitting with buckling restrained braces: Application to an existing non-ductile RC framed building. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1279–1297
https://doi.org/10.1016/j.soildyn.2010.06.001
45 Computers & Structures, Inc. CSI Analysis Reference Manual for SAP2000, 2016
46 M SilviaM FrankH S MichaelL F Gregory. OpenSees Command Language Manual, 2006
47 356 FEMA. Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Washington, D.C.: Federal Emergency Management Agency, 2000
48 Y L Feng, J Wu, C L Wang, S P Meng. Evaluating the effect of buckling-restrained brace model on seismic structural responses. Journal of Earthquake and Tsunami, 2016, 11(2): 1750002
https://doi.org/10.1142/S1793431117500026
49 P695 FEMA. Quantification of Building Seismic Performance Factors. California, CA: Applied Technology Council, 2009, 695
50 J Wieser, G Pekcan, A E Zaghi, A Itani, M Maragakis. Floor accelerations in yielding special moment resisting frame structures. Earthquake Spectra, 2013, 29(3): 987–1002
https://doi.org/10.1193/1.4000167
51 M E Rodriguez, J I Restrepo, A J Carr. Earthquake-induced floor horizontal accelerations in buildings. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 693–718
https://doi.org/10.1002/eqe.149
52 S Wu, P Pan, D Zhang. Higher mode effects in frame pin-supported wall structure by using a distributed parameter model. Earthquake Engineering & Structural Dynamics, 2016, 45(14): 2371–2387
https://doi.org/10.1002/eqe.2766
53 R B Fleischman, K T Farrow, K Eastman. Seismic performance of perimeter lateral-system structures with highly flexible diaphragms. Earthquake Spectra, 2002, 18(2): 251–286
https://doi.org/10.1193/1.1490547
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed