Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2023, Vol. 17 Issue (12): 1871-1894   https://doi.org/10.1007/s11709-023-0021-y
  本期目录
An isogeometric approach to free vibration analysis of bi-directional functionally graded porous doubly-curved shallow microshells with variable length-scale parameters
Khuat Duc DUONG1, Dao Nhu MAI2, Phung Van MINH3, Tran Van KE3()
1. Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
2. Institute of Mechanics, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
3. Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
 全文: PDF(15148 KB)   HTML
Abstract

This study uses iso-geometric investigation, which is based on the non-uniform rational B-splines (NURBS) basis function, to investigate natural oscillation of bi-directional functionally graded porous (BFGP) doubly-curved shallow microshells placed on Pasternak foundations with any boundary conditions. The characteristics of the present material vary in both thickness and axial directions along the x-axis. To be more specific, a material length-scale coefficient of the microshell varies in both thickness and length directions as the material’s mechanical properties. One is able to develop a differential equation system with varying coefficients that regulate the motion of BFGP double-curved shallow microshells by using Hamilton principle, Kirchhoff–Love hypothesis, and modified couple stress theory. The numerical findings are reported for thin microshells that are spherical, cylindrical, and hyperbolic paraboloidal, with a variety of planforms, including rectangles and circles. The validity and effectiveness of the established model are shown by comparing the numerical results given by the proposed formulations with previously published findings in many specific circumstances. In addition, influences of length scale parameters, power-law indexes, thickness-to-side ratio, and radius ratio on natural oscillation responses of BFGP microshells are investigated in detail.

Key wordsKirchhoff–Love’s shell theory    isogeometric analysis    bi-directional functionally graded    free vibration    variable length-scale parameter
收稿日期: 2023-02-10      出版日期: 2024-02-05
Corresponding Author(s): Tran Van KE   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2023, 17(12): 1871-1894.
Khuat Duc DUONG, Dao Nhu MAI, Phung Van MINH, Tran Van KE. An isogeometric approach to free vibration analysis of bi-directional functionally graded porous doubly-curved shallow microshells with variable length-scale parameters. Front. Struct. Civ. Eng., 2023, 17(12): 1871-1894.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-023-0021-y
https://academic.hep.com.cn/fsce/CN/Y2023/V17/I12/1871
Fig.1  
Fig.2  
Fig.3  
l/hpelement meshRef. [56]
3 × 35 × 57 × 79 × 911 × 1113 × 1315 × 15
0253.542353.191553.107453.070853.051553.040253.033053.01
353.197053.031953.015953.012653.011653.011253.0110
453.027953.011753.011053.010853.010853.010853.0108
0.5257.551657.138657.048757.012956.994956.984656.978156.96
357.048356.969056.961256.959656.959156.958956.9588
456.967156.959256.958856.958756.958756.958756.9587
1267.888067.245567.099167.041967.013566.997366.987366.97
367.005966.962766.958666.957866.957566.957466.9573
466.961466.957666.957466.957366.957266.957266.9572
Tab.1  
Fig.4  
Fig.5  
a/hl/hαz = 0αz = 1αz = 10
analytical method [57]presentanalytical method [57]presentanalytical method [57]present
200.26.40276.44244.95684.98344.03234.0657
0.47.67087.70816.07566.10164.74884.7755
0.811.410811.44789.28879.31716.90136.9216
1.013.554513.593411.104211.13528.14948.1691
1000.26.45346.45514.99224.99404.07254.0751
0.47.72177.72336.11266.11464.78404.7866
0.811.468911.47049.33449.33706.93456.9375
1.013.618613.620211.156011.15898.18468.1880
Tab.2  
BCshell typel/hΩ1Ω2Ω4
Ref. [56]presentRef. [56]presentRef. [56]present
CCCCSP0.058.2258.463881.5281.6794113.7114.3199
0.569.0069.2346110.79110.9631158.7159.3315
1.094.0194.2619170.8170.9732248.8249.6578
HP0.050.6850.851978.9579.0971110.2110.8405
0.562.6762.8575108.9109.1077156.1156.8381
1.089.4289.6571169.6169.8286247.0248.0400
CY0.046.2346.475474.4574.6195109.9110.5494
0.559.1559.3826105.7105.8907156.0156.665
1.087.0287.2669167.5167.7632247.1248.0013
SSSSSP0.053.0153.010861.8561.822887.5487.5932
0.556.9656.958779.8279.7911119.1119.1266
1.066.9766.9572118.3118.3022183.7183.6842
HP0.042.6642.622658.3458.318982.4882.898
0.547.2547.220277.1577.1449115.6115.7122
1.058.8358.8047116.6116.5945181.3181.4759
CY0.036.8236.814351.4451.445782.0582.1266
0.542.0742.068072.0472.0612115.1115.1858
1.054.7754.7614113.2113.2673181.1181.1937
Tab.3  
BCshell typel/hΩ1Ω2Ω4
Ref. [56]presentRef. [56]presentRef. [56]present
CCCCSP0.041.4041.613641.4041.613649.3549.6384
0.546.8346.965348.8346.965360.9361.1569
1.051.5151.824560.0360.154086.7386.9350
HP0.035.6135.930235.9436.162441.2841.6139
0.537.9238.195442.1842.371354.5454.8163
1.042.3042.581456.5556.745482.2382.5726
CY0.025.6025.720428.6528.835240.3840.5982
0.531.9232.103933.6333.738753.9454.1202
1.037.1737.371750.4650.560581.9982.1945
SSSSSP0.039.3639.366639.3639.366644.4344.4571
0.541.3741.391841.4041.391850.7950.8157
1.046.4446.440846.4446.440866.0066.0415
HP0.033.7533.771433.7533.771435.2835.3011
0.536.3636.370836.3636.370842.9343.0087
1.038.2838.268142.1242.164860.0660.2305
CY0.020.6220.630926.2926.306133.4533.4966
0.524.1324.153330.3930.397841.4041.4334
1.031.8631.850631.9832.020659.2259.2931
Tab.4  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.05.47884.24243.55162.98042.61662.5349
0.55.82724.39853.66493.05662.66352.5729
1.06.72164.79633.95153.25792.79482.6801
U0.05.44404.26793.63513.12232.79612.7212
0.55.81634.43683.75803.20792.85312.7687
1.06.76774.87184.07683.43963.01322.9028
CCCCE0.06.05134.63183.88543.28732.88772.7993
0.57.00125.02934.14803.45853.00242.8984
1.09.26776.04224.83423.91933.32023.1761
U0.06.02324.68774.00913.47233.11993.0383
0.57.03685.12804.30903.67683.26283.1635
1.09.42866.23945.08594.22163.65483.5109
SFSFE0.03.54152.70372.29881.98971.76191.6942
0.53.76752.82492.37512.03331.79151.7216
1.04.07462.98922.48442.10301.84411.7718
U0.03.51792.72192.34882.06751.86511.8038
0.53.75272.85042.43242.11821.90091.8377
1.04.07523.02522.55222.19861.96321.8980
CSCSE0.05.76234.43773.73243.15102.75562.6694
0.56.42874.70693.91773.27812.84102.7408
1.08.07815.40464.40903.62523.07992.9426
U0.05.73104.47803.83163.30792.96282.8842
0.56.44304.77684.04293.45903.06872.9742
1.08.18915.54734.60093.86883.36293.2271
Tab.5  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.05.73104.47803.83163.30792.96282.8842
0.56.44304.77684.04293.45903.06872.9742
1.08.18915.54734.60093.86883.36293.2271
U0.04.39593.47072.96832.55042.28942.2317
0.54.82833.65833.10262.64692.35562.2866
1.05.93074.16263.46972.91562.54302.4430
CCCCE0.05.26704.02483.39252.88232.54312.4664
0.56.32754.47173.68853.07652.67252.5777
1.08.76675.58294.44463.58693.02502.8855
U0.05.24684.08103.50803.05242.75282.6825
0.56.37684.57533.84563.28342.91352.8228
1.08.94405.79024.69823.88383.34643.2064
SFSFE0.03.39852.62342.22191.90031.67501.6163
0.53.53222.68702.26101.92341.69151.6314
1.03.81872.81922.34341.97371.72871.6661
U0.03.37492.63642.26531.97321.77301.7203
0.53.51692.70562.30962.00081.79331.7394
1.03.82172.85032.40332.06121.83891.7827
CSCSE0.04.85973.72523.14092.66102.35372.2873
0.55.62094.03203.35332.80942.45272.3691
1.07.44594.82023.91073.20642.72522.5981
U0.04.83673.77313.24272.81152.53612.4736
0.55.64934.11413.48542.98722.65862.5768
1.07.57554.98114.11563.45262.99272.8632
Tab.6  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.03.82802.94632.50062.15101.90711.8409
0.54.28983.14752.64102.24511.96721.8898
1.05.43283.67003.01232.50202.13612.0285
U0.03.80692.96922.56002.24552.03121.9716
0.54.30043.19032.71812.35672.10592.0335
1.05.51023.76143.13462.65752.31392.2080
CCCCE0.04.80913.62903.06532.64702.35332.2759
0.55.95274.12413.39572.86012.49252.3961
1.08.50115.31304.21033.40622.86712.7244
U0.04.79403.68973.18112.80902.55272.4812
0.56.01074.23473.55513.06102.72512.6322
1.08.68785.52924.46853.70043.18353.0398
SFSFE0.03.25772.49922.11691.82491.61491.5584
0.53.40932.57752.16531.85061.63311.5756
1.03.70872.72182.25681.90471.67281.6133
U0.03.23542.51412.16081.89341.70831.6578
0.53.39562.59782.21441.92471.73071.6794
1.03.71342.75432.31721.99001.77961.7263
CSCSE0.04.27653.23342.74362.37862.11922.0486
0.55.12523.58762.99042.54682.22832.1391
1.07.07924.45983.61062.98242.52472.3898
U0.04.25953.28032.83552.50912.28452.2189
0.55.16393.67213.11552.70752.41942.3331
1.07.22084.62693.81273.21672.78202.6455
Tab.7  
planformTypeξSSSSCCCCSFSFCSCSSFSSCFCF
SP microshellperfect0.04.44585.65532.74325.07173.33983.5927
E0.14.24125.25042.62974.76073.28693.3444
0.23.98324.78862.46184.39583.22843.0455
U0.14.36015.48902.69544.94403.31843.4927
0.24.27395.33352.64144.82273.29913.3961
HP microshellperfect0.03.82435.25712.58124.58023.06193.5013
E0.13.61974.85122.48284.25652.97783.2583
0.23.38304.40422.34003.89132.87882.9703
U0.13.73855.09142.54064.44783.02713.4043
0.23.65604.94032.49554.32502.99313.3121
CY microshellperfect0.03.45975.01812.48774.25642.04363.4124
E0.13.25724.60122.38623.92821.95143.1668
0.23.02364.14162.23653.55991.85292.8765
U0.13.37524.84802.44574.12282.00603.3144
0.23.29474.69292.39863.99971.97163.2214
FL microshellperfect0.02.64304.55541.26103.69621.56622.7606
E0.12.43144.12621.18243.35351.46772.5040
0.22.21843.66871.10522.98731.37612.2236
U0.12.55624.38181.23223.55861.52792.6613
0.22.48044.22801.20823.43701.49642.5737
Tab.8  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.04.07943.05782.51492.13611.93411.9004
0.54.25823.13342.58132.17191.95401.9181
1.04.70793.29932.69562.24802.00621.9663
U0.04.05243.08772.59722.25442.06202.0326
0.54.24333.16502.66442.28752.08632.0549
1.04.72223.34752.78042.36792.15042.1156
CCCCE0.04.30303.17352.60042.21892.03482.0039
0.54.77473.38162.72362.28722.08132.0477
1.05.25643.71242.95052.44882.21452.1738
U0.04.27873.21702.70212.35862.18612.1561
0.54.78333.44532.84202.44162.24552.2125
1.05.25473.77693.07742.61592.40502.3724
Tab.9  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.03.51112.61072.15271.84421.68991.6649
0.53.74132.74322.23641.88841.71561.6879
1.03.94962.89792.34521.97231.78341.7478
U0.03.48952.64262.22891.94831.80381.7798
0.53.73352.78282.31901.99871.83541.8084
1.03.92342.93002.42842.08921.91871.8833
CCCCE0.03.71132.68402.19261.88501.75201.7294
0.53.91092.79302.25821.91941.77291.7486
1.04.30563.01572.40542.00401.82521.7959
U0.03.68782.71962.27551.99831.87401.8516
0.53.89712.83422.34632.03781.89961.8754
1.04.31473.07152.50682.13561.96401.9340
Tab.10  
BCTypelc/hgrading-indexes, αx = αz = α
α = 0α = 0.5α = 1α = 2α = 5α = 10
SSSSE0.02.18441.62431.38501.23491.15331.1362
0.52.49111.72881.44361.27101.18231.1637
1.03.19621.98991.59301.36501.25961.2382
U0.02.17381.64671.42891.29171.21821.2032
0.52.50021.76281.49701.33611.25491.2384
1.03.24442.05181.67101.45221.35261.3334
CCCCE0.02.69482.02081.71771.51461.39451.3607
0.53.28622.33991.92551.64441.47591.4302
1.03.76462.67372.14021.76131.56691.5323
U0.02.68682.05621.78361.60251.49601.4640
0.53.28152.40512.01751.75571.59781.5524
1.03.78412.72622.23041.87741.68771.6522
Tab.11  
platformTypeξΩˉ1Ωˉ2Ωˉ4
SSSSCCCCSSSSCCCCSSSSCCCC
SP microshellperfect0.02.99543.34583.11473.55903.83614.6642
E0.12.86773.14402.94863.29683.56744.2253
0.22.70532.86702.72242.97993.23103.7274
U0.12.94293.25903.04433.44893.72744.4853
0.22.88893.16422.96833.33973.62304.3175
HP microshellperfect0.02.61732.72972.78053.26733.46884.5236
E0.12.48942.56682.62203.01213.22414.1022
0.22.29852.35222.41632.71762.96163.6104
U0.12.56212.65962.71433.16153.37164.3655
0.22.49802.58492.64543.06033.28414.2011
CY microshellperfect0.01.80782.44032.26722.90883.29614.4260
E0.11.68912.29672.16872.66663.03544.0208
0.21.55712.11012.01582.41062.75083.5627
U0.11.76252.37972.22572.80983.19324.2626
0.21.72112.31672.17682.72123.10034.1165
FL microshellperfect0.00.59511.43191.51022.59312.98304.0700
E0.10.60751.32651.40142.34662.72683.6409
0.20.62311.22281.29472.09162.46353.1851
U0.10.60561.38851.47052.49292.88283.8987
0.20.61731.35141.43822.40462.79603.7469
Tab.12  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 C R Calladine. Theory of Shell Structures. Cambridge: Cambridge University, 1983
2 W Pietraszkiewicz, V Konopińska. Junctions in shell structures: A review. Thin-walled Structures, 2015, 95: 310–334
https://doi.org/10.1016/j.tws.2015.07.010
3 V P Nguyen, C Anitescu, S P A Bordas, T Rabczuk. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116
https://doi.org/10.1016/j.matcom.2015.05.008
4 B Jüttler, U Langer, A Mantzaflaris, S E Moore, W Zulehner. Geometry + simulation modules: implementing isogeometric analysis. Proceedings in Applied Mathematics and Mechanics, 2014, 14(1): 961–962
https://doi.org/10.1002/pamm.201410461
5 B Marussig, T J R Hughes. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Archives of Computational Methods in Engineering, 2018, 25(4): 1059–1127
https://doi.org/10.1007/s11831-017-9220-9
6 T J R Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39−41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
7 T J R Hughes, A Reali, G Sangalli. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49−50): 4104–4124
https://doi.org/10.1016/j.cma.2008.04.006
8 J A Cottrell, A Reali, Y Bazilevs, T J R Hughes. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41−43): 5257–5296
https://doi.org/10.1016/j.cma.2005.09.027
9 T J R Hughes, A Reali, G Sangalli. Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 301–313
https://doi.org/10.1016/j.cma.2008.12.004
10 M R Dörfel, B Jüttler, B Simeon. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 264–275
https://doi.org/10.1016/j.cma.2008.07.012
11 A Buffa, G Sangalli, R Vazquez. Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17−20): 1143–1152
https://doi.org/10.1016/j.cma.2009.12.002
12 Y Bazilevs, I Akkerman. Large eddy simulation of turbulent Taylor−Couette flow using isogeometric analysis and the residual-based variational multiscale method. Journal of Computational Physics, 2010, 229(9): 3402–3414
https://doi.org/10.1016/j.jcp.2010.01.008
13 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87: 104225
https://doi.org/10.1016/j.euromechsol.2021.104225
14 H Guo, T Rabczuk, X Zhuang. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
15 H Guo, H Zheng, X Zhuang. Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry. Applied Mathematical Modelling, 2019, 66: 695–727
https://doi.org/10.1016/j.apm.2018.10.006
16 H Guo, H Zheng. The linear analysis of thin shell problems using the numerical manifold method. Thin-walled Structures, 2018, 124: 366–383
https://doi.org/10.1016/j.tws.2017.12.027
17 A M Shaaban, C Anitescu, E Atroshchenko, T Rabczuk. Isogeometric indirect BEM solution based on virtual continuous sources placed directly on the boundary of 2D Helmholtz acoustic problems. Engineering Analysis with Boundary Elements, 2023, 148: 243–255
https://doi.org/10.1016/j.enganabound.2022.12.021
18 E Cohen, T Martin, R M Kirby, T Lyche, R F Riesenfeld. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 334–356
https://doi.org/10.1016/j.cma.2009.09.010
19 N Valizadeh, S Natarajan, O A Gonzalez-Estrada, T Rabczuk, T Q Bui, S P A Bordas. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326
https://doi.org/10.1016/j.compstruct.2012.11.008
20 S M Dsouza, T M Varghese, P R Budarapu, S Natarajan. A non-intrusive stochastic isogeometric analysis of functionally graded plates with material uncertainty. Axioms, 2020, 9(3): 92
https://doi.org/10.3390/axioms9030092
21 Q Hu, Y Xia, S Natarajan, A Zilian, P Hu, S P A Bordas. Isogeometric analysis of thin Reissner–Mindlin shells: Locking phenomena and B-bar method. Computational Mechanics, 2020, 65(5): 1323–1341
https://doi.org/10.1007/s00466-020-01821-5
22 S H Ha, K K Choi, S Cho. Numerical method for shape optimization using T-spline based isogeometric method. Structural and Multidisciplinary Optimization, 2010, 42(3): 417–428
https://doi.org/10.1007/s00158-010-0503-0
23 Y Bazilevs, V Calo, Y Zhang, T Hughes. Isogeometric fluid−structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 2006, 38(4−5): 310–322
https://doi.org/10.1007/s00466-006-0084-3
24 R Schmidt, J Kiendl, K U Bletzinger, R Wüchner. Realization of an integrated structural design process: Analysis-suitable geometric modelling and isogeometric analysis. Computing and Visualization in Science, 2010, 13(7): 315–330
https://doi.org/10.1007/s00791-010-0147-z
25 J Bazilevs. Isogeometric Analysis of Turbulence and Fluid-Structure Interaction. Austin: The University of Texas, 2006
26 Y WangZ WangZ XiaL H Poh. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling in Engineering & Sciences, 2018, 117(3): 455–507
27 Z BontinckJ CornoGersem H deS KurzA PelsS SchöpsF WolfFalco C deJ DölzR VázquezU Römer. Recent advances of isogeometric analysis in computational electromagnetics. Technical Article, Cornell University, 2017
28 Q H Pham, P C Nguyen, V K Tran, T Nguyen-Thoi. Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium. Defence Technology, 2022, 18(8): 1311–1329
https://doi.org/10.1016/j.dt.2021.09.006
29 Q H Pham, P C Nguyen, V K Tran, Q X Lieu, T T Tran. Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates. Engineering with Computers, 2022, 39(1): 993–1018
https://doi.org/10.1007/s00366-022-01726-2
30 R Ansari, A Norouzzadeh. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis. Physica E, Low-Dimensional Systems and Nanostructures, 2016, 84: 84–97
https://doi.org/10.1016/j.physe.2016.05.036
31 F Fan, B Lei, S Sahmani, B Safaei. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-walled Structures, 2020, 154: 106841
https://doi.org/10.1016/j.tws.2020.106841
32 A Norouzzadeh, R Ansari. Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-walled Structures, 2018, 127: 354–372
https://doi.org/10.1016/j.tws.2017.11.040
33 F Fan, Y Xu, S Sahmani, B Safaei. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113400
https://doi.org/10.1016/j.cma.2020.113400
34 D T Luat, D Van Thom, T T Thanh, P Van Minh, T Van Ke, P Van Vinh. Mechanical analysis of bi-functionally graded sandwich nanobeams. Advances in Nano Research, 2021, 11(1): 55–71
https://doi.org/10.12989/anr.2021.11.1.055
35 T C N Nguyen. Static bending analysis of variable thickness microplates using the finite element method and modified couple stress theory. Journal of Science and Technology, 2022, 17(3)
36 N T Dung, L M Thai, T Van Ke, T T H Huyen, P Van Minh. Nonlinear static bending analysis of microplates resting on imperfect two-parameter elastic foundations using modified couple stress theory. Comptes Rendus. Mécanique, 2022, 350(G1): 121–141 (in French)
https://doi.org/10.5802/crmeca.105
37 J Qiu, S Sahmani, B Safaei. On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mechanics Based Design of Structures and Machines, 2020, 51(2): 816–840
https://doi.org/10.1080/15397734.2020.1853567
38 F Rahmouni, M Elajrami, K Madani, R D S G Campilho. Isogeometric analysis based on non-uniform rational B-splines technology of stress and failure strength in inter-ply hybrid laminated composite. Journal of Composite Materials, 2022, 56(18): 2921–2932
https://doi.org/10.1177/00219983221105313
39 N C Tho, P H Cong, A M Zenkour, D H Doan, P V Minh. Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer. Composite Structures, 2023, 305: 116529
https://doi.org/10.1016/j.compstruct.2022.116529
40 L T Tuan, N T Dung, D Van Thom, P Van Minh, A M Zenkour. Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium. European Physical Journal Plus, 2021, 136(12): 1199
https://doi.org/10.1140/epjp/s13360-021-02191-4
41 V M Phung. Static bending analysis of symmetrical three-layer FG beam with shear connectors under static load. Journal of Science and Technology, 2020, 15(3): 68–78
https://doi.org/10.56651/lqdtu.jst.v15.n03.213
42 P Van Minh, T Van Ke. A comprehensive study on mechanical responses of non-uniform thickness piezoelectric nanoplates taking into sccount the flexoelectric effect. Arabian Journal for Science and Engineering, 2022, 48: 11457–11482
https://doi.org/10.1007/s13369-022-07362-8
43 V M Phung. Static bending analysis of nanoplates on discontinuous elastic foundation with flexoelectric effect. Journal of Science and Technology, 2022, 17(5): 47–57
https://doi.org/10.56651/lqdtu.jst.v17.n05.529
44 L M Thai, D T Luat, T Van Ke, M Phung Van. Finite-element modeling for static bending analysis of rotating two-layer FGM beams with shear connectors resting on imperfect elastic foundations. Journal of Aerospace Engineering, 2023, 36(3): 04023013
https://doi.org/10.1061/JAEEEZ.ASENG-4771
45 D M TienD Van ThomP Van MinhN C ThoT N DoanD N Mai. The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates. Mechanics Based Design of Structures and Machines, 2023, 1–23
46 V K Tran, T T Tran, M Van Phung, Q H Pham, T Nguyen-Thoi. A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation. Journal of Nanomaterials, 2020, 2020: 1–20
https://doi.org/10.1155/2020/8786373
47 M Van Phung, D T Nguyen, L T Doan, D Van Nguyen, T Van Duong. Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors. Iranian Journal of Science and Technology. Transaction of Mechanical Engineering, 2022, 46(4): 1047–1065
https://doi.org/10.1007/s40997-021-00459-9
48 T T Tran, V K Tran, P B Le, V M Phung, V T Do, H N Nguyen. Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method. Advances in Civil Engineering, 2020, 2020: 1–17
https://doi.org/10.1155/2020/1471037
49 D Nguyen Thai, P Van Minh, C Phan Hoang, T Ta Duc, N Nguyen Thi Cam, D Nguyen Thi. Bending of symmetric sandwich FGM beams with shear connectors. Mathematical Problems in Engineering, 2021, 2021: 1–15
https://doi.org/10.1155/2021/7596300
50 N C Tho, N T Thanh, T D Tho, P Van Minh, L K Hoa. Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(11): 510
https://doi.org/10.1007/s40430-021-03189-w
51 D Shahsavari, B Karami, H R Fahham, L Li. On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mechanica, 2018, 229(11): 4549–4573
https://doi.org/10.1007/s00707-018-2247-7
52 A Karamanlı, T P Vo. Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Composites. Part B, Engineering, 2018, 144: 171–183
https://doi.org/10.1016/j.compositesb.2018.02.030
53 M H Ghayesh, H Farokhi. Nonlinear mechanics of doubly curved shallow microshells. International Journal of Engineering Science, 2017, 119: 288–304
https://doi.org/10.1016/j.ijengsci.2017.06.015
54 F Yang, A C M Chong, D C C Lam, P Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39(10): 2731–2743
https://doi.org/10.1016/S0020-7683(02)00152-X
55 V K Tran, Q H Pham, T Nguyen-Thoi. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers, 2022, 38(2): 1465–1490
https://doi.org/10.1007/s00366-020-01107-7
56 A M Dehrouyeh-Semnani, H Mostafaei. Vibration analysis of scale-dependent thin shallow microshells with arbitrary planform and boundary conditions. International Journal of Engineering Science, 2021, 158: 103413
https://doi.org/10.1016/j.ijengsci.2020.103413
57 H X Nguyen, T N Nguyen, M Abdel-Wahab, S P A Bordas, H Nguyen-Xuan, T P Vo. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 904–940
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed