Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2024, Vol. 18 Issue (9): 1401-1423   https://doi.org/10.1007/s11709-024-1099-6
  本期目录
An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints
Thu Huong NGUYEN THI1, Van Ke TRAN2, Quoc Hoa PHAM3()
1. School of Mechanical and Automotive Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
2. Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
3. Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
 全文: PDF(4884 KB)   HTML
Abstract

This work uses isogeometric analysis (IGA), which is based on nonlocal hypothesis and higher-order shear beam hypothesis, to investigate the static bending and free oscillation of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam subject to elastic boundary constraints (BCs). The magneto-electric boundary condition and the Maxwell equation are used to calculate the variation of electric and magnetic potentials along the thickness direction of the nanobeam. This study is innovative since it does not use the conventional boundary conditions. Rather, an elastic system of straight and torsion springs with controllable stiffness is used to support nanobeams’ beginning and end positions, creating customizable BCs. The governing equations of motion of nanobeams are established by applying Hamilton’s principle and IGA is used to determine deflections and natural frequency values. Verification studies were performed to evaluate the convergence and accuracy of the proposed method. Aside from this, the impact of the input parameters on the static bending and free oscillation of the MEE-FG nanobeam is examined in detail. These findings could be valuable for analyzing and designing innovative structures constructed of functionally graded MEE materials.

Key wordselastic boundary conditions    isogeometric analysis    nanobeam via nonlocal theory    grading of magneto-electro-elastic functions
收稿日期: 2023-11-05      出版日期: 2024-09-18
Corresponding Author(s): Quoc Hoa PHAM   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2024, 18(9): 1401-1423.
Thu Huong NGUYEN THI, Van Ke TRAN, Quoc Hoa PHAM. An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints. Front. Struct. Civ. Eng., 2024, 18(9): 1401-1423.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-024-1099-6
https://academic.hep.com.cn/fsce/CN/Y2024/V18/I9/1401
Fig.1  
Fig.2  
V0(×10?2V) p Mesh (Tn) Ref. [55]
3 5 7 11 17 34
?1 2 2.2383 2.1822 2.1669 2.1576 2.1539 2.1519 2.1544
3 2.1530 2.1514 2.1513 2.1512 2.1512 2.1512
4 2.1512 2.1512 2.1512 2.1512 2.1512 2.1512
0 2 1.8502 1.7978 1.7835 1.7747 1.7712 1.7694 1.7725
3 1.7704 1.7689 1.7688 1.7687 1.7687 1.7687
4 1.7688 1.7687 1.7687 1.7687 1.7687 1.7687
1 2 1.3551 1.3046 1.2908 1.2822 1.2788 1.2770 1.2817
3 1.2780 1.2766 1.2764 1.2764 1.2764 1.2764
4 1.2764 1.2764 1.2764 1.2764 1.2764 1.2764
Tab.1  
Fig.3  
Mode Method V0(×10?2V)
?1 ?0.5 0 0.5 1
1 Ref. [55] 2.1544 1.9727 1.7725 1.5467 1.2817
Present 2.1512 1.9693 1.7687 1.5423 1.2764
2 Ref. [55] 4.8174 4.4967 4.1512 3.7742 3.3551
Present 4.8104 4.4892 4.1432 3.7653 3.3451
3 Ref. [55] 7.3145 6.8422 6.3347 5.7829 5.1725
Present 7.3057 6.8327 6.3275 5.7718 5.1601
Tab.2  
Mode Method Ψ0(×10?4A)
?1 ?0.5 0 0.5 1
1 Ref. [55] 1.0790 1.4674 1.7725 2.0324 2.2627
Present 1.0727 1.4627 1.7687 2.0291 2.2597
2 Ref. [55] 3.0578 3.6457 4.1512 4.6014 5.0114
Present 3.0469 3.6366 4.1432 4.5942 5.0048
3 Ref. [55] 4.7421 5.7965 6.3347 6.9963 7.6006
Present 4.7308 5.5865 6.3275 6.9904 7.5957
Tab.3  
Φ (nm2)ηSourceT, ΔC) = (0,0)T, ΔC) = (20,1)T, ΔC) = (40,2)
pz = 0.2pz = 5pz = 0.2pz = 5pz = 0.2pz = 5
00Ref. [56]7.96804.84507.44404.00636.86732.9180
Present7.97434.85537.45074.01996.87572.9383
1Ref. [56]7.88174.76647.66494.39607.43633.9829
Present7.88764.77797.67274.39737.42383.9787
20Ref. [56]7.28174.42776.70353.48926.05702.1527
Present7.28744.43716.71023.50256.06512.1764
1Ref. [56]7.18714.34146.94853.93036.69523.4610
Present7.19234.35216.94383.93136.68773.4577
Tab.4  
BCs V0 (V) pz Ψ0=?10?4A Ψ0=10?4A
w1 Ω1 Ω2 w1 Ω1 Ω2
CC –10–2 0.1 1.8981 7.5469 15.6113 1.7968 7.7552 15.9873
0.5 1.6915 6.9517 13.7638 1.5752 7.2029 14.2186
10–2 0.1 1.9828 7.3849 15.3200 1.8725 7.5978 15.7031
0.5 1.7919 6.7550 13.4088 1.6618 7.0133 13.8752
SS –10–2 0.1 4.7796 5.0029 11.2875 4.4194 5.2012 11.6386
0.5 5.1104 4.4876 9.9416 4.6400 4.7077 10.3386
10–2 0.1 5.0943 4.8471 11.0138 4.6872 5.0516 11.3734
0.5 5.5356 4.3132 9.6297 4.9881 4.5418 10.0391
E1E1 –10–2 0.1 1.8981 2.5927 7.5469 1.7968 2.5927 7.7552
0.5 1.6915 2.3346 6.9517 1.5752 2.3346 7.2029
10–2 0.1 1.9828 2.5927 7.3849 1.8725 2.5927 7.5978
0.5 1.7919 2.3346 6.7550 1.6618 2.3346 7.0133
E2E2 –10–2 0.1 2.0981 7.2796 14.7586 2.0005 7.4590 15.0689
0.5 1.8992 6.7057 13.1132 1.7872 6.9220 13.4944
10–2 0.1 2.1797 7.1389 14.5160 2.0735 7.3236 14.8347
0.5 1.9959 6.5344 12.8118 1.8706 6.7590 13.2071
E3E3 –10–2 0.1 7.7054 3.5677 6.0129 7.6867 3.5689 6.1796
0.5 7.6685 3.2142 5.3596 7.6475 3.2155 5.5459
10–2 0.1 7.7212 3.5666 5.8834 7.7006 3.5680 6.0536
0.5 7.6868 3.2131 5.2139 7.6631 3.2145 5.4053
CE1 –10–2 0.1 1.8981 7.5469 15.6113 1.7968 7.7552 15.9873
0.5 1.6915 6.9517 13.7638 1.5752 7.2029 14.2186
10–2 0.1 1.9828 7.3849 15.3200 1.8725 7.5978 15.7031
0.5 1.7919 6.7550 13.4088 1.6618 7.0133 13.8752
CE2 –10–2 0.1 1.9926 7.4158 15.1448 1.8930 7.6097 15.4834
0.5 1.7886 6.8327 13.4086 1.6741 7.0667 13.8214
10–2 0.1 2.0760 7.2644 14.8811 1.9675 7.4633 15.2276
0.5 1.8874 6.6484 13.0840 1.7594 6.8902 13.5100
Tab.5  
BCs V0 (V) ηm (nm) Ψ0=?10?4A Ψ0=10?4A
w1 Ω1 Ω2 w1 Ω1 Ω2
CC –10–2 1 1.4629 5.9504 10.7389 1.3028 6.3045 11.3716
2 1.3115 4.4971 6.6472 1.0024 5.1413 7.7310
10–2 1 1.6132 5.6670 10.2331 1.4206 6.0380 10.8954
2 1.7150 3.9389 5.6895 1.2204 4.6611 6.9249
SS –10–2 1 6.4438 3.7439 7.7853 5.6262 4.0051 8.2865
2 12.6522 2.9621 4.9509 10.3347 3.2860 5.7068
10–2 1 7.2420 3.5331 7.3827 6.2250 3.8087 7.9094
2 15.0877 2.6906 4.2900 12.0022 3.0436 5.1440
E1E1 –10–2 1 1.4629 2.0290 5.9504 1.3028 2.0290 6.3045
2 1.3116 2.0290 4.4971 1.0025 2.0290 5.1413
10–2 1 1.6132 2.0290 5.6670 1.4206 2.0290 6.0379
2 1.7150 2.0290 3.9389 1.2205 2.0290 4.6611
E2E2 –10–2 1 1.6792 5.7785 10.4056 1.5253 6.0906 10.9616
2 1.5338 4.4698 6.5850 1.2368 5.0915 7.6131
10–2 1 1.8239 5.5248 9.9532 1.6386 5.8562 10.5441
2 1.9219 3.9249 5.6579 1.4462 4.6288 6.8509
E3E3 –10–2 1 7.6283 2.7947 4.4352 7.6003 2.7963 4.6586
2 7.6019 2.7933 3.4511 7.5493 2.7977 3.7344
10–2 1 7.6550 2.7932 4.2579 7.6209 2.7952 4.4903
2 7.6718 2.7859 3.2182 7.5863 2.7947 3.5218
CE1 –10–2 1 1.4629 5.9504 10.7389 1.3028 6.3045 11.3716
2 1.3116 4.4971 6.6472 1.0025 5.1413 7.7309
10–2 1 1.6132 5.6670 10.2331 1.4206 6.0379 10.8954
2 1.7150 3.9389 5.6895 1.2204 4.6611 6.9249
CE2 –10–2 1 1.5618 5.8697 10.5591 1.4043 6.2039 11.1485
2 1.4129 4.4844 6.6154 1.1087 5.1181 7.6700
10–2 1 1.7098 5.6004 10.0832 1.5203 5.9526 10.7055
2 1.8100 3.9324 5.6736 1.3232 4.6461 6.8869
Tab.6  
ΔT (K) Mode Ψ0=10?4A
?1 ?0.5 0 0.5 1
0 1 3.5911 3.6608 3.7293 3.7965 3.8626
2 7.4932 7.6264 7.7573 7.8860 8.0127
3 11.7632 11.9530 12.1397 12.3237 12.5049
50 1 3.5331 3.6040 3.6735 3.7417 3.8087
2 7.3827 7.5178 7.6506 7.7811 7.9094
3 11.6060 11.7983 11.9874 12.1737 12.3571
100 1 3.4741 3.5462 3.6168 3.6861 3.7541
2 7.2704 7.4076 7.5423 7.6747 7.8048
3 11.4466 11.6415 11.8332 12.0218 12.2075
150 1 3.4141 3.4874 3.5592 3.6296 3.6987
2 7.1564 7.2958 7.4325 7.5668 7.6987
3 11.2849 11.4826 11.6769 11.8680 12.0560
200 1 3.3530 3.4277 3.5007 3.5722 3.6424
2 7.0406 7.1822 7.3210 7.4573 7.5911
3 11.1209 11.3214 11.5184 11.7121 11.9027
Tab.7  
ΔC Mode V0(×10?2V)
?1 ?0.5 0 0.5 1
0 1 4.0321 3.9842 3.9358 3.8867 3.8371
2 8.3383 8.2463 8.1532 8.0590 7.9638
3 12.9719 12.8397 12.7062 12.5713 12.4348
0.5 1 4.0051 3.9569 3.9082 3.8588 3.8087
2 8.2865 8.1938 8.1001 8.0053 7.9094
3 12.8974 12.7645 12.6301 12.4944 12.3571
1 1 3.9780 3.9294 3.8803 3.8306 3.7802
2 8.2342 8.1410 8.0467 7.9513 7.8547
3 12.8225 12.6887 12.5536 12.4170 12.2789
2 1 3.9231 3.8739 3.8241 3.7736 3.7224
2 8.1288 8.0344 7.9388 7.8421 7.7441
3 12.6713 12.5359 12.3991 12.2608 12.1209
5 1 3.7537 3.7023 3.6501 3.5972 3.5434
2 7.8040 7.7056 7.6059 7.5048 7.4024
3 12.2064 12.0659 11.9237 11.7798 11.6341
Tab.8  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 M Vinyas, S C Kattimani. A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Structural Engineering and Mechanics, 2017, 62: 519–535
2 G Y Zhang, Y L Qu, X L Gao, F Jin. A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mechanics of Materials, 2020, 149: 103412
https://doi.org/10.1016/j.mechmat.2020.103412
3 X L Zhang, Q Xu, X Zhao, Y H Li, J Yang. Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments. Composite Structures, 2020, 234: 111524
https://doi.org/10.1016/j.compstruct.2019.111524
4 L Xin, Z Hu. Free vibration of simply supported and multilayered magneto-electro-elastic plates. Composite Structures, 2015, 121: 344–350
https://doi.org/10.1016/j.compstruct.2014.11.030
5 J Liu, P Zhang, G Lin, W Wang, S Lu. Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method. Engineering Analysis with Boundary Elements, 2016, 68: 103–114
https://doi.org/10.1016/j.enganabound.2016.04.005
6 L Xu, C Chen, Y Zheng. Two-degrees-of-freedom nonlinear free vibration analysis of magneto-electro-elastic plate based on high order shear deformation theory. Communications in Nonlinear Science and Numerical Simulation, 2022, 114: 106662
https://doi.org/10.1016/j.cnsns.2022.106662
7 S C Kattimani, M C Ray. Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates. International Journal of Mechanical Sciences, 2015, 99: 154–167
https://doi.org/10.1016/j.ijmecsci.2015.05.012
8 M Vinyas, S C Kattimani. Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study. Composite Structures, 2017, 178: 63–86
https://doi.org/10.1016/j.compstruct.2017.06.068
9 F Ebrahimi, A Jafari, M R Barati. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-walled Structures, 2017, 119: 33–46
https://doi.org/10.1016/j.tws.2017.04.002
10 E L Sh, S Kattimani, M Vinyas. Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates. Archives of Civil and Mechanical Engineering, 2022, 22(1): 38
https://doi.org/10.1007/s43452-021-00357-6
11 S Q Zhang, Y F Zhao, X Wang, M Chen, R Schmidt. Static and dynamic analysis of functionally graded magneto-electro-elastic plates and shells. Composite Structures, 2022, 281: 114950
https://doi.org/10.1016/j.compstruct.2021.114950
12 M Shaat, F F Mahmoud, X L Gao, A F Faheem. Size-dependent bending analysis of Kirchhoff nanoplates based on a modified couple-stress theory including surface effects. International Journal of Mechanical Sciences, 2014, 79: 31–37
https://doi.org/10.1016/j.ijmecsci.2013.11.022
13 M S Nematollahi, H Mohammadi, M A Nematollahi. Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices and Microstructures, 2017, 111: 944–959
https://doi.org/10.1016/j.spmi.2017.07.055
14 V K Tran, Q H Pham, T Nguyen-Thoi. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers, 2022, 38(2): 1465–1490
15 V K Tran, T T Tran, M V Phung, Q H Pham, T Nguyen-Thoi. A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation. Journal of Nanomaterials, 2020, 2020: 1–20
https://doi.org/10.1155/2020/8786373
16 Q H Pham, V K Tran, T T Tran, T Nguyen-Thoi, P C Nguyen, V D Pham. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation. Case Studies in Thermal Engineering, 2021, 26: 101170
https://doi.org/10.1016/j.csite.2021.101170
17 A C Eringen, D G B Edelen. On nonlocal elasticity. International Journal of Engineering Science, 1972, 10(3): 233–248
https://doi.org/10.1016/0020-7225(72)90039-0
18 Q H PhamV K TranP C Nguyen. Nonlocal strain gradient finite element procedure for hygro-thermal vibration analysis of bidirectional functionally graded porous nanobeams. Waves in Random and Complex Media, 2023. Available at website of Taylor & Francis Online
19 M Hashemian, S Foroutan, D Toghraie. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mechanics of Materials. Mechanics of Materials, 2019, 139: 103209
https://doi.org/10.1016/j.mechmat.2019.103209
20 B Zhang, H Li, L Kong, H Shen, X Zhang. Coupling effects of surface energy, strain gradient, and inertia gradient on the vibration behavior of small-scale beams. International Journal of Mechanical Sciences, 2020, 184: 105834
https://doi.org/10.1016/j.ijmecsci.2020.105834
21 P Van Minh, T Van Ke. A comprehensive study on mechanical responses of non-uniform thickness piezoelectric nanoplates taking into account the flexoelectric effect. Arabian Journal for Science and Engineering, 2023, 48(9): 11457–11482
https://doi.org/10.1007/s13369-022-07362-8
22 T Rabczuk, H Ren, X Zhuang. A Nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55
https://doi.org/10.32604/cmc.2019.04567
23 H Ren, X Zhuang, T Rabczuk. A higher order nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113132
https://doi.org/10.1016/j.cma.2020.113132
24 H Ren, X Zhuang, X Fu, Z Li, T Rabczuk. Bond-based nonlocal models by nonlocal operator method in symmetric support domain. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116230
https://doi.org/10.1016/j.cma.2023.116230
25 M Arefi, A M Zenkour. Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation. Mechanics Research Communications, 2017, 79: 51–62
https://doi.org/10.1016/j.mechrescom.2017.01.004
26 W Xiao, Y Gao, H Zhu. Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Microsystem Technologies, 2019, 25(6): 2451–2470
https://doi.org/10.1007/s00542-018-4145-2
27 K K Żur, M Arefi, J Kim, J N Reddy. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Composites. Part B, Engineering, 2020, 182: 107601
https://doi.org/10.1016/j.compositesb.2019.107601
28 Z Lyu, M Ma. Nonlinear dynamic modeling of geometrically imperfect magneto-electro-elastic nanobeam made of functionally graded material. Thin-walled Structures, 2023, 191: 111004
https://doi.org/10.1016/j.tws.2023.111004
29 M A Koçİ EsenM Eroğlu. Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity. Mechanics of Advanced Materials and Structures, 2023, Available at website of Taylor & Francis Online
30 X Zhuang, H Ren, T Rabczuk. Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model. European Journal of Mechanics. A, Solids, 2021, 90: 104380
https://doi.org/10.1016/j.euromechsol.2021.104380
31 H Ghasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
32 H Ghasemi, H S Park, T Rabczuk. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62
https://doi.org/10.1016/j.cma.2017.12.005
33 H S Ghasemi, H Park, X Zhuang, T Rabczuk. Three-Dimensional isogeometric analysis of flexoelectricity with MATLAB implementation. Computers, Materials & Continua, 2020, 65: 1157–1179
https://doi.org/10.32604/cmc.2020.08358
34 D Wang, J Xu, F Gao, C C L Wang, R Gu, F Lin, T Rabczuk, G Xu. IGA-Reuse-NET: A deep-learning-based isogeometric analysis-reuse approach with topology-consistent parameterization. Computer Aided Geometric Design, 2022, 95: 102087
https://doi.org/10.1016/j.cagd.2022.102087
35 K D Nguyen, C L Thanh, H Nguyen-Xuan, M Abdel-Wahab. A hybrid phase-field isogeometric analysis to crack propagation in porous functionally graded structures. Engineering with Computers, 2023, 39(1): 129–149
https://doi.org/10.1007/s00366-021-01518-0
36 X Zhuang, S Zhou, G D Huynh, P Areias, T Rabczuk. Phase field modeling and computer implementation: A review. Engineering Fracture Mechanics, 2022, 262: 108234
https://doi.org/10.1016/j.engfracmech.2022.108234
37 H Ait Atmane, A Tounsi, S A Meftah, H A Belhadj. Free vibration behavior of exponential functionally graded beams with varying cross-section. Journal of Vibration and Control, 2011, 17(2): 311–318
https://doi.org/10.1177/1077546310370691
38 J Sladek, V Sladek, S Krahulec, E Pan. Analyses of functionally graded plates with a magnetoelectroelastic layer. Smart Materials and Structures, 2013, 22(3): 035003
https://doi.org/10.1088/0964-1726/22/3/035003
39 C M Wang, Y Y Zhang, X Q He. Vibration of nonlocal Timoshenko beams. Nanotechnology, 2007, 18(10): 105401
https://doi.org/10.1088/0957-4484/18/10/105401
40 Q H Pham, P Malekzadeh, V K Tran, T Nguyen-Thoi. Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro-thermo-magnetic environment. Frontiers of Structural and Civil Engineering, 2023, 17(4): 584–605
https://doi.org/10.1007/s11709-023-0916-7
41 Q H PhamV K TranP C Nguyen. Nonlocal strain gradient finite element procedure for hygro-thermal vibration analysis of bidirectional functionally graded porous nanobeams. Waves in Random and Complex Media, 2023, Available at website of Taylor & Francis Online
42 L M Thai, D T Luat, T Van Ke, M Phung Van. Finite-element modeling for static bending analysis of rotating two-layer FGM beams with shear connectors resting on imperfect elastic foundations. Journal of Aerospace Engineering, 2023, 36(3): 04023013
https://doi.org/10.1061/JAEEEZ.ASENG-4771
43 A C Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983, 54(9): 4703–4710
https://doi.org/10.1063/1.332803
44 Q H Pham, V K Tran, P C Nguyen. Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium. Defence Technology, 2023, 35: 77–99
https://doi.org/10.1016/j.dt.2023.09.004
45 Q H Pham, V K Tran, T T Tran, V Nguyen, A M Zenkour. Nonlocal higher-order finite element modeling for vibration analysis of viscoelastic orthotropic nanoplates resting on variable viscoelastic foundation. Composite Structures, 2023, 318: 117067
https://doi.org/10.1016/j.compstruct.2023.117067
46 M Sobhy. A comprehensive study on FGM nanoplates embedded in an elastic medium. Composite Structures, 2015, 134: 966–980
https://doi.org/10.1016/j.compstruct.2015.08.102
47 T T Tran, V K Tran, Q H Pham, A M Zenkour. Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Composite Structures, 2021, 264: 113737
https://doi.org/10.1016/j.compstruct.2021.113737
48 T T Thi, H T. Static and dynamic analyses of multi-directional functionally graded porous nanoplates with variable nonlocal parameter using MITC3+ element. Journal of Vibration Engineering & Technologies, 2024, 12(3): 1–25
49 Q H Pham, T T Tran, V K Tran, P C Nguyen, T Nguyen-Thoi, A M Zenkour. Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation. Mechanics of Advanced Materials and Structures, 2022, 29(27): 5885–5905
https://doi.org/10.1080/15376494.2021.1968549
50 T A Huynh, X Q Lieu, J Lee. NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem. Composite Structures, 2017, 160: 1178–1190
https://doi.org/10.1016/j.compstruct.2016.10.076
51 Q H Pham, P C Nguyen, V K Tran, Q X Lieu, T T Tran. Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates. Engineering with Computers, 2023, 39(1): 993–1018
https://doi.org/10.1007/s00366-022-01726-2
52 Q H Pham, P C Nguyen, V K Tran, T Nguyen-Thoi. Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium. Defence Technology, 2022, 18(8): 1311–1329
https://doi.org/10.1016/j.dt.2021.09.006
53 T J R Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
54 M J Borden, M A Scott, J A Evans, T J R Hughes. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 2011, 87(1–5): 15–47
https://doi.org/10.1002/nme.2968
55 Y S Li, P Ma, W Wang. Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. Journal of Intelligent Material Systems and Structures, 2016, 27(9): 1139–1149
https://doi.org/10.1177/1045389X15585899
56 F Ebrahimi, M R Barati. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Applied Physics. A-Materials Science & Processing, 2016, 122(9): 792
https://doi.org/10.1007/s00339-016-0322-2
[1] FSC-24099-OF-THNT_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed