Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2010, Vol. 4 Issue (2) : 233-240    https://doi.org/10.1007/s11709-010-0020-7
Research articles
Three-dimensional numerical modeling of single geocell-reinforced sand
Xiaoming YANG1,Jie HAN1,Robert L. PARSONS1,Dov LESHCHINSKY2,
1.Department of Civil, Environmental, and Architectural Engineering, the University of Kansas, Lawrence, KS 55045, USA; 2.Department of Civil and Environmental Engineering, the University of Delaware, Newark, DE 19719, USA;
 Download: PDF(484 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper summarizes the development of a three-dimensional numerical model for analyzing single geocell-reinforced soil. In this model, the infill soil was modeled using the Duncan-Chang model, which can simulate non-linearity and stress-dependency of soil. Geocell was modeled using linearly elastic plate elements, which can carry both bending and membrane stresses. A linear interface stress-strain relationship with a Mohr-Coulomb yield criterion was adopted to model the interface friction between the geocell wall and the soil. By modeling the geocell and the soil separately, the interaction between the soil and the geocell can be accurately simulated. To verify this model, a plate load test was conducted in the laboratory, in which a 12-cm-thick sand layer reinforced by a single geocell was subjected to a vertical load from a circular steel plate. The load-displacement curves and the horizontal tensile strain of the geocell were recorded during the test. A numerical model was created according to the setup of the load test. The numerical results compared reasonably well with the test data.
Keywords geosynthetic reinforcement      geocell      numerical model      FLAC3D      
Issue Date: 05 June 2010
 Cite this article:   
Xiaoming YANG,Robert L. PARSONS,Jie HAN, et al. Three-dimensional numerical modeling of single geocell-reinforced sand[J]. Front. Struct. Civ. Eng., 2010, 4(2): 233-240.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-010-0020-7
https://academic.hep.com.cn/fsce/EN/Y2010/V4/I2/233
Webster S. Investigation of Beach Sand Trafficability EnhancementUsing Sand-Grid Confinement and Membrane Reinforcement Concepts. Technical Report GL-79-20, 1979
Dash S K, Krishnaswamy N R, Rajagopal K. Bearing capacity of stripfootings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 2001, 19(4): 235―256

doi: 10.1016/S0266-1144(01)00006-1
Dash S K, Sireesh S, Sitharam T G. Model studies on circularfooting supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 2003, 21(4): 197―219

doi: 10.1016/S0266-1144(03)00017-7
Dash S K, Rajagopal K, Krishnaswamy N R. Performance of differentgeosynthetic reinforcement materials in sand foundations. Geosynthetics International, 2004, 11(1): 35―42
Thallak S G, Saride S, Dash S K. Performance of surface footingon geocell-reinforced soft clay beds. Geotechnicaland Geological Engineering, 2007, 25: 509―524

doi: 10.1007/s10706-007-9125-8
Chen R H, Chiu Y M. Model testsof geocell retaining structures. Geotextilesand Geomembranes, 2008, 26(1): 56―70

doi: 10.1016/j.geotexmem.2007.03.001
Pokharel S K, Han J, Leshchinsky D, Parsons R L, Halahmi I. Behaviorof geocell-reinforced granular bases under static and repeated loads.In: International Foundation Congress & EquipmentExpo 2009- IFCEE '09. Orlando: Geotechnical Special Publication No. 187, 2009, 409―416
Pokharel S K, Han J, Leshchinsky D, Parsons R L, Halahmi I. Experimental evaluation of influence factors for single geocell-reinforced sand. In: Proceedings of the Transportation Research Board 88th Annual Meeting. Washington D C: Transportation Research Board, 2009
Sireesh S, Sitharam T G, Dash S K. Bearing capacity of circularfooting on geocell-sand mattress overlying clay bed with void. Geotextiles and Geomembranes, 2009, 27(2): 89―98

doi: 10.1016/j.geotexmem.2008.09.005
Cowland J W. Performance of a road embankment on soft clay supportedon a geocell mattress fondation. Geotextilesand Geomembranes, 1993, 12(8): 687―705

doi: 10.1016/0266-1144(93)90046-Q
Al-Qadi I L, Hughes J J. Field evaluation of geocell use in flexible pavements. Transportation Research Record, 2000, 1709: 26―35
Bathurst R J, Karpurapu R. Large-Scaletriaxial compression testing of geocell-reinforced granular soils. ASTM Geotechnical Testing Journal, 1993, 16(3): 296―303

doi: 10.1520/GTJ10050J
Henkel D J, Gilbert G D. The effect of the rubber membrane on the measured triaxial compressionstrength of clay samples. Geotechnique, 1952, 3(1): 20―29

doi: 10.1680/geot.1952.3.1.20
Madhavi Latha G. Investigations on the behaviour of geocell supportedembankments. Dissertation for the DoctoralDegree. Chenai: Indian Institute of Technology Madras, 2000
Duncan J M, Chang C Y. Non-linearanalysis of the stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629―1653
Madhavi Latha G, Rajagopal K. Parametricfinite element analyses of geocell-supported embankment. Canadian Geotechnical Journal, 2007, 44(8): 917―927

doi: 10.1139/T07-039
Madhavi Latha G, Dash S K, Rajagopal K. Numerical simulation of the behaviorof geocell reinforced sand in foundations. International Journal of Geomechanics, ASCE, 2009, 9(4): 143―152

doi: 10.1061/(ASCE)1532-3641(2009)9:4(143)
Han J, Yang X, Leshchinsky D, Parsons R L, Rosen A. Numerical analysisfor mechanisms of a geocell-reinforced base under a vertical load. In: Proceedings of the 4th Asian Regional Conferenceon Geosynthetics. Shanghai, 2008
Han J, Yang X, Leshchinsky D, Parsons R L. Behavior of geocell-reinforced sand under a verticalload. Journal of Transportation ResearchBoard, 2008, n2045: 95―101
Duncan J M, Byrne P, Wong K S, Mabry P. Strength,stress-strain and bulk modulus parameters for finite element analysesof stresses and movements in soil masses. UCB/GT/80-01, University of California, Berkeley CA
Boscardin M D, Selig E T, Lin R S, Yang G R. Hyperbolic parameters for compacted soils. Journal of Geotechnical Engineering, ASCE, 1990, 116(1): 88―104

doi: 10.1061/(ASCE)0733-9410(1990)116:1(88)
Ling H I, Cardany C P, Sun L X. Finite element study of ageosynthetic-reinforced soil retaining wall with concrete-block facing. Geosynthetics International, 2000, 7(3): 163―188
Wesseloo J, Visser A T, Rust E. A mathematical model forthe strain-rate dependent stress-strain response of HDPE geomembranes. Geotextiles and Geomembranes, 2004, 22(4): 273―295

doi: 10.1016/j.geotexmem.2004.02.002
Itasca Consulting GroupInc. Fast Lagrangian Analysis of Continuain 3 Dimensional (Flac3D) Software Manual, 2006
[1] Zhongwei ZHAO, Miao LIU, Haiqing LIU, Bing LIANG, Yongjing LI, Yuzhuo ZHANG. Pull-through capacity of bolted thin steel plate[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1166-1179.
[2] Dan V. BOMPA, Ahmed Y. ELGHAZOULI. Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 331-356.
[3] Vahid ALIZADEH. Finite element analysis of controlled low strength materials[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1243-1250.
[4] Ali JENABIDEHKORDI. Computational methods for fracture in rock: a review and recent advances[J]. Front. Struct. Civ. Eng., 2019, 13(2): 273-287.
[5] Fatiha IGUETOULENE, Youcef BOUAFIA, Mohand Said KACHI. Non linear modeling of three-dimensional reinforced and fiber concrete structures[J]. Front. Struct. Civ. Eng., 2018, 12(4): 439-453.
[6] Sergio A. MARTÍNEZ-GALVÁN, Miguel P. ROMO. Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation[J]. Front. Struct. Civ. Eng., 2018, 12(1): 67-80.
[7] Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model[J]. Front. Struct. Civ. Eng., 2017, 11(2): 228-243.
[8] Ben DAEE,Hesham El NAGGAR. 3D finite element analysis of composite noise barrier constructed of polyurethane products[J]. Front. Struct. Civ. Eng., 2017, 11(1): 100-110.
[9] João Pedro SANTOS,Christian CREMONA,André D. ORCESI,Paulo SILVEIRA,Luis CALADO. Static-based early-damage detection using symbolic data analysis and unsupervised learning methods[J]. Front. Struct. Civ. Eng., 2015, 9(1): 1-16.
[10] Qiangong CHENG, Jiujiang WU, Zhang SONG, Hua WEN. The behavior of a rectangular closed diaphragm wall when used as a bridge foundation[J]. Front Struc Civil Eng, 2012, 6(4): 398-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed