Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (1) : 41-52    https://doi.org/10.1007/s11709-010-0070-x
RESEARCH ARTICLE
A general framework for modeling long-term behavior of earth and concrete dams
Bernhard A. SCHREFLER1(), Francesco PESAVENTO1, Lorenzo SANAVIA1, Giuseppe SCIUME1, Stefano SECCHI2, Luciano SIMONI1
1. Department of Structural and Transportation Engineering, University of Padova, Padova 35131, Italy; 2. CNR ISIB, Padova, Italy
 Download: PDF(761 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many problems are linked with the long-term behavior of both earthdams and concrete dams. They range from hydraulic fracturing to alkali-silica reaction (ASR) and to repair work in concrete dams, from seismic behavior to secondary consolidation in earthdams. A common framework for the simulation of such systems is shown, based on the mechanics of multiphase porous media. The general model is particularized to specific situations and several examples are shown.

Keywords earth dams      concrete dams      multiphase porous materials      coupled problems      hydraulic fracture      concrete hydration      alkali-silica reaction (ASR)      finite element method     
Corresponding Author(s): SCHREFLER Bernhard A.,Email:bernhard.schrefler@unipd.it   
Issue Date: 05 March 2011
 Cite this article:   
Bernhard A. SCHREFLER,Francesco PESAVENTO,Lorenzo SANAVIA, et al. A general framework for modeling long-term behavior of earth and concrete dams[J]. Front Arch Civil Eng Chin, 2011, 5(1): 41-52.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-010-0070-x
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I1/41
1 Lewis R W, Schrefler B A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Chichester: Wiley, 1998
2 Schrefler B A. Mechanics and thermodynamics of saturated-unsaturated porous materials and quantitative solutions. Applied Mechanics Review , 2002, 55(4): 351–388
doi: 10.1115/1.1484107
3 Zienkiewicz O C, Chan A, Pastor M, Schrefler B A, Shiomi T. Computational Soil Dynamics with Special Reference to Earthquake Engineering. Chichester: Wiley, 1999
4 Sanavia L, Pesavento F, Schrefler B A. Finite element analysis of non-isothermal multiphase geomaterials with application to strain localisation simulation. Computational Mechanics , 2006, 37(4): 331–348
doi: 10.1007/s00466-005-0673-6
5 Zienkiewicz O C, Taylor R L. The Finite Element Method. Vol. 2: The Basis. 5th ed. Oxford: Butterworth-Heinemann, 2000
6 Simoni L, Secchi S, Schrefler B A. Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media. Computational Mechanics , 2008, 43(1): 179–189
doi: 10.1007/s00466-008-0302-2
7 Bishop A W. The principle of effective stress. Teknisk Ukeblad , 1959, 39: 859–863
8 Skempton A W. Effective stress in soils, concrete and rock. In: Pore Pressure and Suction in Soils . London: Butterworth, 1961, 4–16
9 Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division , 1977, 103: 447–466
10 Schre?er B A, Simoni L, Li X, Zienkiewicz O C. Mechanics of partially saturated porous media. In: Desai C S, Gioda G, eds. Numerical Methods and Constitutive Modelling in Geomechanics. Courses and Lectures CISM . Berlin: Springer, 1990, 311: 169–209
11 Coussy O. Mechanics of Porous Continua. Chichester: Wiley, 1995
12 Khalili N, Khabbaz M H, Villiappan S. An effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media. Computational Mechanics , 2000, 26(2): 174–184
doi: 10.1007/s004660000165
13 Gray W G, Hassanizadeh S M. Unsaturated flow theory including interfacial phenomena. Water Resources Research , 1991, 27(8): 1855–1863
doi: 10.1029/91WR01260
14 Gray W G, Schre?er B A. Thermodynamic approach to effective stress in partially saturated porous media. European Journal of Mechanics A: Solids , 2001, 20(4): 521–538
doi: 10.1016/S0997-7538(01)01158-5
15 Schrefler B A. F. E. in environmental engineering: Coupled thermo-hydro-mechanical processes in porous media including pollutant transport. Archives of Computational Methods in Engineering , 1995, 2(3): 1–54
doi: 10.1007/BF02736173
16 Gray W G, Schrefler B A. Analysis of the solid phase stress tensor in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics , 2007, 31(4): 541–581
doi: 10.1002/nag.541
17 Gray W G, Schrefler B A, Pesavento F. The solid phase stress tensor in porous media mechanics and the Hill-Mandel condition. Journal of the Mechanics and Physics of Solids , 2009, 57(3): 539–554
doi: 10.1016/j.jmps.2008.11.005
18 Pesavento F, Gawin D, Schrefler B A. Modeling cementitious materials as multiphase porous media: theoretical framework and applications. Acta Mechanica , 2008, 201(1–4): 313–339
doi: 10.1007/s00707-008-0065-z
19 Camacho G T, Ortiz M. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures , 1996, 33(20–22): 2899–2938
doi: 10.1016/0020-7683(95)00255-3
20 ICOLD. Fifth International Benchmark Workshop on Numerical Analysis of Dams, Theme A2. Denver , 1999
21 Schrefler B A, Secchi S, Simoni L. On adaptive refinement techniques in multifield problems including cohesive fracture. Computer Methods in Applied Mechanics and Engineering , 2006, 195(4–6): 444–461
doi: 10.1016/j.cma.2004.10.014
22 Briseghella L, Sanavia L, Schrefler B A. Seismic analysis of earth dams using a multiphase model. In: Proceedings of the IXth Italian National Congress “L’Ingegneria Sismica in Italia”, Turin, Italy . 1999
23 Zhang H W, Sanavia L, Schrefler B A. Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model. Computers and Structures , 2001, 79(4): 441–459
doi: 10.1016/S0045-7949(00)00144-9
24 Gawin D, Sanavia L, Schrefler B A. Cavitation modelling in saturated geomaterials with application to dynamic strain localisation. International Journal for Numerical Methods in Fluids , 1998, 27: 109–125
doi: 10.1002/(SICI)1097-0363(199801)27:1/4<109::AID-FLD653>3.0.CO;2-M
25 Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics , 1990,14: 151–190
doi: 10.1002/nag.1610140302
26 Bolzon G, Schrefler B A, Zienkiewicz O C. Elastoplastic soil constitutive laws generalized to partially saturated states. Geotechnique , 1996, 46(2): 279–289
doi: 10.1680/geot.1996.46.2.279
27 Santagiuliana R, Schrefler B A. Enhancing the Bolzon-Schrefler-Zienkiewicz constitutive model for partially saturate soil. Transport in Porous Media , 2006, 65(1): 1–30
doi: 10.1007/s11242-005-6083-6
28 Safai N M, Pinder G F. Vertical and horizontal land deformation in a desaturating porous medium. Advances in Water Resources , 1979, 2: 19–25
doi: 10.1016/0309-1708(79)90003-4
29 Gawin D, Pesavento F, Schrefler B A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering , 2006, 67(3): 299–331
doi: 10.1002/nme.1615
30 Gawin D, Pesavento F, Schrefler B A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and creep of concrete. International Journal for Numerical Methods in Engineering , 2006, 67(3): 332–363
doi: 10.1002/nme.1636
31 Cervera M, Olivier J, Prato T. A thermo-chemo-mechanical model for concrete. II: damage and creep. Journal of Engineering Mechanics, ASCE , 1999, 125(9): 1028–1039
doi: 10.1061/(ASCE)0733-9399(1999)125:9(1028)
32 Ba?ant Z P, Prasannan S. Solidification theory for concrete creep. I: formulation. Journal of Engineering Mechanics, ASCE , 1989, 115(8): 1691–1703
doi: 10.1061/(ASCE)0733-9399(1989)115:8(1691)
33 Ba?ant Z P, Hauggaard A B, Baweja S, Ulm F-J. Microprestress-solidification theory for concrete creep. I: aging and drying effects. Journal of Engineering Mechanics, ASCE , 1997, 123(11): 1188–1194
doi: 10.1061/(ASCE)0733-9399(1997)123:11(1188)
34 Lura P, Jensen O M, van Breugel K. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Modelling of autogenous relative humidity change and autogenous deformation. Cement and Concrete Research , 2003, 33(2): 223–232
doi: 10.1016/S0008-8846(02)00890-6
35 Gawin D, Pesavento F, Schrefler B A. Modelling creep and shrinkage of concrete by means of effective stress. Materials and Structures , 2007, 40(6): 579–591
doi: 10.1617/s11527-006-9165-1
[1] Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR. Geotechnical forensic investigation of a slope failure on silty clay soil—A case study[J]. Front. Struct. Civ. Eng., 2020, 14(2): 501-517.
[2] Farhoud KALATEH, Farideh HOSSEINEJAD. Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method[J]. Front. Struct. Civ. Eng., 2020, 14(2): 387-410.
[3] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[4] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[5] Vahid ALIZADEH. Finite element analysis of controlled low strength materials[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1243-1250.
[6] Gui-Rong Liu. The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions[J]. Front. Struct. Civ. Eng., 2019, 13(2): 456-477.
[7] T. VO-DUY, V. HO-HUU, T. NGUYEN-THOI. Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method[J]. Front. Struct. Civ. Eng., 2019, 13(2): 324-336.
[8] Nhan NGUYEN-MINH, Nha TRAN-VAN, Thang BUI-XUAN, Trung NGUYEN-THOI. Static analysis of corrugated panels using homogenization models and a cell-based smoothed mindlin plate element (CS-MIN3)[J]. Front. Struct. Civ. Eng., 2019, 13(2): 251-272.
[9] Farhoud KALATEH. Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element method[J]. Front. Struct. Civ. Eng., 2019, 13(1): 15-37.
[10] Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
[11] P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network[J]. Front. Struct. Civ. Eng., 2017, 11(4): 470-479.
[12] M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI. An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells[J]. Front. Struct. Civ. Eng., 2015, 9(4): 341-358.
[13] B. R. JAYALEKSHMI,S.V. JISHA,R. SHIVASHANKAR. Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil[J]. Front. Struct. Civ. Eng., 2015, 9(3): 307-322.
[14] Xiaonong GUO,Zhe XIONG,Zuyan SHEN. Flexural-torsional buckling behavior of aluminum alloy beams[J]. Front. Struct. Civ. Eng., 2015, 9(2): 163-175.
[15] Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN. 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping[J]. Front. Struct. Civ. Eng., 2014, 8(2): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed