Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2010, Vol. 4 Issue (3) : 339-347    https://doi.org/10.1007/s11709-010-0078-2
Research articles
Concurrent fatigue crack growth simulation using extended finite element method
Zizi LU,Yongming LIU,
Civil Engineering Department, Clarkson University, Potsdam, NY 13699, USA;
 Download: PDF(414 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, a concurrent simulation framework for fatigue crack growth analysis is proposed using a novel small time scale model for fatigue mechanism analysis and the extended finite element method (X-FEM) for fatigue crack growth simulation. The proposed small time scale fatigue model does not require the cycle counting as those using the classical fatigue analysis methods and can be performed concurrently with structural/mechanical analysis. The X-FEM greatly facilitates crack growth simulation without remeshing requirements ahead of the crack tip as in the classical finite element method. The basic concept and theory of X-FEM was briefly introduced and numerical predictions of stress intensity factors are verified with reference solutions under both uniaxial and multiaxial loadings. The small time scale fatigue model is integrated into the numerical simulation algorithm for concurrent fatigue crack growth analysis. Model predictions are compared with available experimental observations for model validation.
Keywords small time scale model      extended finite element method (X-FEM)      crack growth      multiaxial      
Issue Date: 05 September 2010
 Cite this article:   
Zizi LU,Yongming LIU. Concurrent fatigue crack growth simulation using extended finite element method[J]. Front. Struct. Civ. Eng., 2010, 4(3): 339-347.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-010-0078-2
https://academic.hep.com.cn/fsce/EN/Y2010/V4/I3/339
Sih G C. Multiscale Fatigue Crack Initiation and Propagation ofEngineering Materials: Structural Integrity and Microstructural Worthiness. New York: Springer, 2008

doi: 10.1007/978-1-4020-8520-8
Lu Z, Liu Y. An incremental crack growth model for multi-scale fatigue analysis. In: Procleedings of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference Palm Springs, CA, USA. 2009
Pommier S, Risbet M. Time derivative equations for mode I fatigue crack growth in metals. International Journal of Fatigue, 2005, 27(10–12): 1297–1306

doi: 10.1016/j.ijfatigue.2005.06.034
Emery J M, Hochhalter J D, Wawrzynek P A, Heber G, Ingraffea A R. DDSim: A hierarchical, probabilistic, multiscale damage and durabilitysimulation system—Part I: Methodology and Level I. Engineering Fracture Mechanics, 2009, 76(10): 1500–1530

doi: 10.1016/j.engfracmech.2009.02.018
Schütz W. A history of fatigue. Engineering Fracture Mechanics, 1996, 54(2): 263–300

doi: 10.1016/0013-7944(95)00178-6
Paris P, Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering, Transactions of ASME, 1963, 85: 528–534
ASTM. Standard practices for cycle counting in fatigue analysis. E 1048–85 ASTM International, 1985
Lu Z, Liu Y. Small time scale fatigue crack growth analysis. International Journal of Fatigue, 2010
Béchet E, Minnebo H, Mo?s N, Burgardt B. Improved implementation and robustness study of the X-FEMfor stress analysis around cracks. International Journal for Numerical Methods in Engineering, 2005, 64(8): 1033–1056

doi: 10.1002/nme.1386
Dolbow J, Mo?s N, Belytschko T. Modeling fracture in Mindlin-Reissnerplates with the extended finite element method. International Journal of Solids and Structures, 2000, 37(48–50): 7161–7183

doi: 10.1016/S0020-7683(00)00194-3
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Sukumar N, Chopp D L, Mo?s N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-elementmethod. Computer Methods in Applied Mechanicsand Engineering, 2001, 190(46–47): 6183–6200

doi: 10.1016/S0045-7825(01)00215-8
Mo?s N, Belytschko T. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 2002, 69(7): 813–833

doi: 10.1016/S0013-7944(01)00128-X
Stolarska M, Chopp D L, Mo?s N, Belytschko T. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods inEngineering, 2001, 51(8): 943–960

doi: 10.1002/nme.201
Mo?s N, Dolbow J, Belytschko T. A finite element method forcrack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Dolbow J, Mo?s N, Belytschko T. An extended finite elementmethod for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering, 2001, 190(51–52): 6825–6846

doi: 10.1016/S0045-7825(01)00260-2
Daux C, Mo?s N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite elementmethod. International Journal for NumericalMethods in Engineering, 2000, 48(12): 1741–1760

doi: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
Dolbow J. An extended finite element method with discontinuousenrichment for applied mechanics. Dissertation for the Doctoral Degree. Chicago: Northwestern University, 1999, 1–176
Budyn é, Zi G, Mo?s N, Belytschko T. A method for multiple crack growth in brittle materials without remeshing. International Journal for Numerical Methods inEngineering, 2004, 61(10): 1741–1770

doi: 10.1002/nme.1130
Khoei A R, Nikbakhta M. Contact friction modeling with the extended finite element method (X-FEM). Journal of Materials Processing Technology, 2006, 177(1–3): 58–62

doi: 10.1016/j.jmatprotec.2006.03.185
Sukumar N, Srolovitz D J, Baker T J, Prévost J-h. Brittle fracture in polycrystalline microstructureswith the extended finite element method. International Journal for Numerical Methods in Engineering, 2003, 56(14): 2015–2037

doi: 10.1002/nme.653
Patzák B, Jirásek M. Process zone resolution by extended finite elements. Engineering Fracture Mechanics, 2003, 70(7–8): 957–977

doi: 10.1016/S0013-7944(02)00160-1
Sukumar N, Chopp D L, Moran B. Extended finite element method and fastmarching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70(1): 29–48

doi: 10.1016/S0013-7944(02)00032-2
Mariani S, Perego U. Extended finite element method for quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 2003, 58(1): 103–126

doi: 10.1002/nme.761
Liu Y, Mahadevan S. Multiaxial high-cycle fatigue criterion and life prediction for metals. International Journal of Fatigue, 2005, 27(7): 790–800

doi: 10.1016/j.ijfatigue.2005.01.003
Lu Z, Xiang Y, Liu Y. Crack growth-based fatigue-life predictionusing an equivalent initial flaw model. Part II: Multiaxial loading. International Journal of Fatigue, 2010, 32(2): 376–381

doi: 10.1016/j.ijfatigue.2009.07.013
Melenk J M, Babuska I. The partition of unity finite element method:Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 289–314

doi: 10.1016/S0045-7825(96)01087-0
Soheil M, ed. Extended Finite Element Method. Malden: Blackwell Publishing Ltd. 2008
Bordas S, Legay A. X-FEM Mini-Course. Ecole Polytehnique Federale de Lausanne, 2005
Isida M. Stress-intensity factors for the tension of an eccentricallycracked strip. Journal of Applied Mechanics, 1966, 33(3): 674–675
Porter T R. Method of analysis and prediction for variable amplitudefatigue crack growth. Engineering FractureMechanics, 1972, 4(4): 717–736

doi: 10.1016/0013-7944(72)90011-2
[1] Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1531-1544.
[2] Sachin KUMAR,A. S. SHEDBALE,I. V. SINGH,B. K. MISHRA. Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM[J]. Front. Struct. Civ. Eng., 2015, 9(4): 420-440.
[3] Xiaobo REN, Odd M. AKSELSEN, B?rd NYHUS, Zhiliang ZHANG. Influence of welding residual stresses on the ductile crack growth resistance of circumferentially cracked pipe[J]. Front Struc Civil Eng, 2012, 6(3): 217-223.
[4] Lei YANG, Yujing JIANG, Bo LI, Shucai LI, Yang GAO. Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression[J]. Front Struc Civil Eng, 2012, 6(2): 121-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed