Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    2012, Vol. 6 Issue (4) : 398-420    https://doi.org/10.1007/s11709-012-0175-5
RESEARCH ARTICLE
The behavior of a rectangular closed diaphragm wall when used as a bridge foundation
Qiangong CHENG(), Jiujiang WU, Zhang SONG, Hua WEN
Department of Geological Engineering, Southwest Jiaotong University, Chengdu 610031, China
 Download: PDF(2635 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rectangular closed diaphragm (RCD) wall is a new type of bridge foundation. Compared to barrette foundation, measuring the performance of RCD walls is relatively complicated because of their incorporation of a soil core. Using the FLAC3D software, this paper investigates the deformation properties, soil resistance and skin friction of a laterally loaded RCD wall as well as the settlement, axial force and load-sharing ratio of a vertically loaded RCD wall. Special attention is given to the analysis of factors that influence the performance of the soil core. It was found that under lateral loading, the RCD wall behaves as an end-bearing friction wall during the entire loading process. The relative displacement between the wall body and the soil core primarily occurs below the rotation point, and the horizontal displacement of the soil core is greater than that of the wall body. Under vertical loading, the degree of inner skin friction around the bottom of the soil core and the proportion of the loading supported by the soil core increase with increased cross-section size. The wall depth is directly proportional to the loading supported by the outer skin friction and the tip resistance of the wall body and is inversely proportional to the loading borne by the soil core.

Keywords diaphragm wall      soil core      bridge foundation      FLAC3D      bearing behavior     
Corresponding Author(s): CHENG Qiangong,Email:chengqiangong@home.swjtu.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Qiangong CHENG,Jiujiang WU,Zhang SONG, et al. The behavior of a rectangular closed diaphragm wall when used as a bridge foundation[J]. Front Struc Civil Eng, 2012, 6(4): 398-420.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-012-0175-5
https://academic.hep.com.cn/fsce/EN/Y2012/V6/I4/398
1 Smoltczyk U. Geotechnical Engineering Handbook Volume 3: Elements and Structures. Berlin: Ernst&Sohn, 2003
2 Wong I H. Experience with waterproofness of basements constructed of concrete diaphragm walls in Singapore. Tunneling and Underground Space , 1997, 12(4): 491–495
doi: 10.1016/S0886-7798(98)00008-X
3 Phienwej N. Characteristics of ground movements in deep excavations with concrete diaphragm walls in Bangkok soils and their prediction. Geotechnical Engineering , 2003, 34(3): 167–175
4 Li B, Song H T, Pan S. Numerical simulation of quality inspection on concrete diaphragm wall. In: Wieland, Ren & Tan, eds., New Developments in Dam Engineering. Proceedings of the 4th International Conference on Dam Engineering. Oct 18–20, 2004 Nanjing, China . London: Taylor & Francis Group, 2004, 471–476
5 Dzeng R J, Pan N F. Learning heuristics for determining slurry wall panel lengths. Automation in Construction , 2006, 15(3): 303–313
doi: 10.1016/j.autcon.2005.06.003
6 De Luca D A, Lasagna M, Morelli di Popolo e Ticineto A.Installation of a vertical slurry wall around an Italian quarry lake: Complications arising and simulation of the effects on groundwater flow. Environmental Geology , 2007, 53(1): 177–189
7 Oblozinsky P, Ugai K, Katagiri M, Saitoh K, Ishii T, Masuda T, Kuwabara K. A design method for slurry trench wall stability in sandy ground based on the elasto-plastic FEM. Computers and Geotechnics , 2001, 28(2): 145–159
doi: 10.1016/S0266-352X(00)00028-8
8 Roger L Jr, Kazuro M, Kei N. Laboratory-scale saltwater behavior due to subsurface cutoff wall. Journal of Hydrology (Amsterdam) , 2009, 377(3): 227–236
doi: 10.1016/j.jhydrol.2009.08.019
9 Luo G Y, Hong C. Using zero-thickness elements to simulate suspended cut-off walls in a regional seepage field. Computers and Geotechnics , 2006, 33(6–7): 305–315
10 Choi H. Numerical model for analyzing slug tests in vertical cutoff walls.Journal of Geotechnical and Geoenvironmental Engineering , 2007, 133(10): 1249–1258
doi: 10.1061/(ASCE)1090-0241(2007)133:10(1249)
11 Nguyen T B, Lee C, Choi H. Slug test analysis in vertical cutoff walls with consideration of filter cake. Journal of Geotechnical and Geoenvironmental Engineering , 2011, 137(8): 785–797
doi: 10.1061/(ASCE)GT.1943-5606.0000484
12 Wen H, Cheng Q, Meng F, Chen X. Diaphragm wall-soil-cap interaction in rectangular closed diaphragm wall bridge foundations. Frontiers of Architecture and Civil Engineering in China , 2009, 3(1): 93–100
doi: 10.1007/s11709-009-0015-4
13 Takeshi H, Toshiro N, Yuji F. Consideration on stability analysis during excavation of enclosed wall foundation. In: Proceedings of the Japan Society of Civil Engineers , 1993, 462(6): 151–160
14 Graubner C A, Wettmann V. Diaphragm walls in bridge construction – a novel foundation unit. Beton- und Stahlbetonbau , 1993, 88(12): 323–328 (in German)
15 Hiroyuki K, Kunio U, Syozo K, Mitsuaki I. Construction of closed wall foundation in the Sakitama Bridge. In: Proceedings of the Japan Society of Civil Engineers 1989, 409(6): 169–176
16 Verfel J. Rock Grouting and Diaphragm Wall Construction. Amsterdam: Elsevier, 1989
17 Nichol D, Wilson S A. Foundation geology of the River Dee estuary cable-stayed bridge, Flintshire, North Wales. Engineering Geology , 2002, 63(1–2): 131–139
doi: 10.1016/S0013-7952(01)00077-1
18 Takaya K. Box-shaped rigid base for continuous underground wall. Journal of Civil Engineering , 1980, 65(4): 35–42 (in Japanese)
19 Takaya K, Eitetsu D. Well foundation design method of diaphragm wall and in-situ horizontal load test. Civil Engineering Technology , 1980, 36(5): 48–57 (in Japanese)
20 Katsuhiro A, Takahashi Y, Ogasawara L. Basic railway bridge design example: a wall with continuous rigid base. Foundation Work , 1982, 10(12): 70–77 (in Japanese)
21 Sakai K, Tazaki K. Development and applications of diaphragm walling with special section steel: NS-Box. Tunneling and Underground Space , 2003, 18(2–3): 283–289
doi: 10.1016/S0886-7798(03)00037-3
22 Ng C W W, Rigby D B, Ng S W L, Lei G H. Field studies of well-instrumented barrette in Hong Kong. Journal of Geotechnical and Geoenvironmental Engineering , 2000, 126(1): 60–73
doi: 10.1061/(ASCE)1090-0241(2000)126:1(60)
23 Powrie W, Kantartzi C. Ground response during diaphragm wall installation in clay: centrifuge model tests. Geotechnique , 1996, 46(4): 725–739
doi: 10.1680/geot.1996.46.4.725
24 Kung G T C, Hsiao E C L, Schuster M, Juang C H. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Computers and Geotechnics , 2007, 34(5): 385–396
doi: 10.1016/j.compgeo.2007.05.007
25 Ng C W W, Lei G H. Performance of long rectangular barrettes in granitic saprolites. Journal of Geotechnical and Geoenvironmental Engineering , 2003, 129(8): 685–696
doi: 10.1061/(ASCE)1090-0241(2003)129:8(685)
26 Tsai J S, Jou L D, Hsieh H S. A full-scale stability experiment on a diaphragm wall trench. Canadian Geotechnical Journal , 2000, 37(2): 379–392
doi: 10.1139/t99-122
27 Fellenius B H, Altaee A, Kulesza R, Hayes J. O-cell testing and Fe analysis of 28-M-deep barrette in Manila, Philippines. Journal of Geotechnical and Geoenvironmental Engineering , 1999, 125(7): 566–575
doi: 10.1061/(ASCE)1090-0241(1999)125:7(566)
28 Ng C W W, Yan R W M. Stress transfer and deformation mechanisms around a diaphragm wall panel. Journal of Geotechnical and Geoenvironmental Engineering , 1998, 124(7): 638–648
doi: 10.1061/(ASCE)1090-0241(1998)124:7(638)
29 Potyondy J G. Skin friction between various piles and construction materials. Geotechnique , 1961, 11(4): 339–353
doi: 10.1680/geot.1961.11.4.339
30 Acer Y B, Durgunoglu H T, Yumay M T. Interface properties of sands. Geotechnical Division , 1982, 108(4): 648–654
31 Qian J H. Ying Z Z. Geotechnic Principle and Calculation . 3rd ed. Beijing: China Waterpower Press, 2003 (in Chinese)
32 Ministry of Construction of the People’s Republic of China. Technical Code for Building Pile Foundations (JGJ94–94). Beijing: China Architecture and Building Press, 1995 (in Chinese)
[1] Guoqiang LI, Yifan LYU, Yanbo WANG. State-of-the-art on resistance of bearing-type bolted connections in high strength steel[J]. Front. Struct. Civ. Eng., 2020, 14(3): 569-585.
[2] Yi RUI, Mei YIN. Finite element modeling of thermo-active diaphragm walls[J]. Front. Struct. Civ. Eng., 2020, 14(3): 646-663.
[3] Qiangong CHENG,Jiujiang WU,Dongxue ZHANG,Fengping MA. Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil[J]. Front. Struct. Civ. Eng., 2014, 8(2): 124-139.
[4] Xi CHEN, Wei XU. Parametric sensitivity analysis of cellular diaphragm wall[J]. Front Struc Civil Eng, 2012, 6(4): 358-364.
[5] Xiaoming YANG, Jie HAN, Robert L. PARSONS, Dov LESHCHINSKY, . Three-dimensional numerical modeling of single geocell-reinforced sand[J]. Front. Struct. Civ. Eng., 2010, 4(2): 233-240.
[6] Hua WEN, Qiangong CHENG, Fanchao MENG, Xiaodong CHEN. Diaphragm wall-soil-cap interaction in rectangular-closed- diaphragm-wall bridge foundations[J]. Front Arch Civil Eng Chin, 2009, 3(1): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed