Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    0, Vol. Issue () : 72-82    https://doi.org/10.1007/s11709-013-0185-y
RESEARCH ARTICLE
Liquefaction prediction using support vector machine model based on cone penetration data
Pijush SAMUI()
Centre for Disaster Mitigation and Management, VIT University, Vellore-632014, India
 Download: PDF(288 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A support vector machine (SVM) model has been developed for the prediction of liquefaction susceptibility as a classification problem, which is an imperative task in earthquake engineering. This paper examines the potential of SVM model in prediction of liquefaction using actual field cone penetration test (CPT) data from the 1999 Chi-Chi, Taiwan earthquake. The SVM, a novel learning machine based on statistical theory, uses structural risk minimization (SRM) induction principle to minimize the error. Using cone resistance (qc) and cyclic stress ratio (CSR), model has been developed for prediction of liquefaction using SVM. Further an attempt has been made to simplify the model, requiring only two parameters (qc and maximum horizontal acceleration amax), for prediction of liquefaction. Further, developed SVM model has been applied to different case histories available globally and the results obtained confirm the capability of SVM model. For Chi-Chi earthquake, the model predicts with accuracy of 100%, and in the case of global data, SVM model predicts with accuracy of 89%. The effect of capacity factor (C) on number of support vector and model accuracy has also been investigated. The study shows that SVM can be used as a practical tool for prediction of liquefaction potential, based on field CPT data.

Keywords earthquake      cone penetration test      liquefaction      support vector machine (SVM)      prediction     
Corresponding Author(s): SAMUI Pijush,Email:pijush.phd@gmail.com   
Issue Date: 05 March 2013
 Cite this article:   
Pijush SAMUI. Liquefaction prediction using support vector machine model based on cone penetration data[J]. Front Struc Civil Eng, 0, (): 72-82.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-013-0185-y
https://academic.hep.com.cn/fsce/EN/Y0/V/I/72
qc/Mpaamax/galCSRLiquefactionqc/Mpaamax/galCSRliquefactionqc/Mpaamax/galCSRliquefaction
1.277740.643Yes13.651880.2no17.081880.20no
1.977740.665yes17.081880.2no6.641210.14no
0.727740.665yes2.661880.18yes5.591210.15no
1.797740.749yes1.821880.19yes7.581210.14no
1.357740.802yes8.251880.21no6.851210.14no
11.667740.836no7.411880.21no6.681210.14no
13.897740.853no2.541880.2yes5.211210.14no
14.457740.829no8.301880.21no6.121210.14no
20.057740.826no12.771880.2no7.181210.14no
0.944200.34yes1.181880.16yes5.911210.15no
1.474200.37yes2.961880.2yes5.381210.15no
11.324200.46no1.732070.21yes6.621210.15no
11.564200.37no8.001880.2no7.991210.14no
12.894200.46no8.011880.2no7.381210.14no
3.864200.37yes8.741880.19no7.411210.14no
6.014200.40yes10.051880.18no7.031210.14no
16.34200.43no11.261880.17no6.731210.15no
1.414200.35yes6.832070.23no6.491210.14no
0.904200.39yes7.522070.23no5.471210.14no
11.964200.46no2.611880.19yes6.321210.14no
1.874200.42yes6.611880.22no0.921210.11yes
5.774200.48yes8.301880.2no1.501210.13yes
8.271880.21no8.321880.21no0.641210.13yes
2.541880.17yes11.581880.2no6.051210.15no
7.461880.22no3.001880.18yes6.761210.15no
7.621880.22no2.091880.2yes2.491210.12yes
2.701880.18yes2.781880.24yes2.011210.13yes
8.031880.21no2.691880.22yes1.891210.14yes
6.801880.21no3.051880.22yes1.541210.14yes
7.021880.20no14.671880.2no7.431210.14no
6.671880.22no10.611880.2no7.721210.14no
7.721880.22no14.741880.19no6.611210.14no
7.681880.18no13.651880.19no7.121210.14no
2.221880.20yes1.281210.13yes6.081210.14no
6.231880.21no0.641210.13yes7.761210.14no
12.151880.20no5.461210.14no9.481210.12no
2.541880.16yes5.161210.14no0.201210.12yes
2.621880.18yes3.261210.11yes5.931210.13no
8.151880.21no2.651210.13yes7.941210.14no
10.081880.21no7.401210.14no7.571210.14no
12.431880.20no7.041210.15no0.231210.11yes
16.891880.20no7.471210.15no0.181210.12yes
1.621880.16yes7.681210.14no7.241210.14no
2.451880.19yes6.541210.14no6.211210.14no
6.701880.21no13.651880.2no8.831210.14no
9.191880.21no
Tab.1  Data from Chi-Chi earthquake
qc/kPaamax/gliquefactionqc/kPaamax/gliquefactionqc/kPaamax/gliquefaction
32000.16yes114700.4no67000.8no
16000.16yes157600.4no16500.2yes
72000.16yes113900.2no36500.2yes
56000.16yes121200.2no10300.2yes
54500.16yes177600.2no50000.2yes
88400.16yes26500.2yes29100.2yes
97000.16yes44000.2yes60600.2yes
80000.16no30000.2yes132400.2no
145500.16no90000.2yes130600.2no
100000.23no20000.1yes165900.2no
160000.23no11000.2yes105900.2no
153800.23no155000.1no91200.2no
17900.23yes65000.1no112900.2no
41000.23yes90000.1no19400.2yes
79500.23yes25000.1no50000.2yes
89700.23yes165000.1no22400.2yes
17000.4yes136500.1no141200.1no
94000.4yes84700.2no189400.1no
57000.4yes45500.2no35200.2yes
76000.4yes57900.2no27300.2yes
15000.4yes24800.2yes32900.2yes
10000.4yes15700.2yes41200.2yes
50000.4yes14500.2yes29400.2yes
25000.4yes21500.2yes30000.2yes
26000.4yes26000.2yes58500.2yes
32000.4yes27300.2yes90000.2yes
58000.4yes17800.2yes18000.2yes
35000.4yes76400.2no25500.2yes
84000.4yes256000.8no45000.2yes
17000.4yes247000.8no42400.2yes
35000.4yes314000.8no80000.2yes
41000.4yes14300.8yes52200.22yes
55000.4yes24800.8yes37300.22yes
90000.4yes40300.8yes31100.22yes
70000.4yes33000.8no13200.22yes
11800.4yes88000.8no52200.22yes
42400.4yes
Tab.2  Data from different case histories presented by Goh (1996)
Fig.1  Support vectors with maximum margin
kernelCtraining performance/%testing performance/%CPU time/s
linear1401001003.03
polynomial, degree= 3401001003.02
radial basis function, width σ = 11501001003.19
bspline, degree= 21010010010.59
Fourier, degree= 501063.83603.51
simple dot product15098.9492.53.25
spline1201001003.41
sigmoid, scale= 0.1, offset= -0.052001001003.03
Tab.3  General performance of SVM for different kernels for MODEL-I
Fig.2  Variation of testing accuracy and number of support vectors with values for MODEL-I. (a) Linear; (b) polynomial; (c) radial basis function; (d) bspline kernel
Fig.3  Variation of testing accuracy and number of support vectors with values for MODEL-I. (a) Fourier; (b) simple dot product; (c) spline; (d) sigmoid kernel
kernelCtraining performance/%testing performance/%literature data performance/%CPU time/s
linear14010010088.073.63
polynomial, degree= 34010010088.073.61
radial basis function, width σ = 110010010088.993.78
bspline, degree= 21010010088.0714.34
Fourier, degree= 501064.896031.194.41
simple dot product9098.9492.5086.243.50
spline12010010088.074.28
sigmoid, scale= 0.1, offset= -0.0515010010088.074.12
Tab.4  General performance of SVM for different kernels for MODEL-II
Fig.4  Variation of testing accuracy and number of support vectors with values for MODEL-II. (a) Linear; (b) polynomial; (c) radial basis function; (d) bspline kernel
Fig.5  Variation of testing accuracy and number of support vectors with values for MODEL-II. (a) Fourier; (b) simple dot product; (c) spline; (d) sigmoid kernel
Fig.6  Number of support vectors for different kernels using design value for MODEL-I
Fig.7  SVM prediction for MODEL-I
Fig.8  Number of support vectors for different kernels using design value for MODEL-II
Fig.9  SVM prediction for MODEL-II
1 Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundation Divisions , 1971, 97(9): 1249–1273
2 Seed H B, Tokimatsu K, Harder L F, Chung R. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of the Geotechnical Engineering Dividions , 1985, 111(12): 1425–1445
doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
3 Robertson P K, Campanella R G. Liquefaction potential of sands using the cone penetration test. Journal of the Geotechnical Engineering Dividions , 1985, 111(3): 384–403
doi: 10.1061/(ASCE)0733-9410(1985)111:3(384)
4 Skempton A W. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation. Geotechnique , 1986, 36(3): 425–447
doi: 10.1680/geot.1986.36.3.425
5 Seed H B, De Alba P M. Use of SPT and CPT for evaluating the liquefaction resistance of sands. In: Proceedings of In Situ’86, a Specialty Conference on Use of In Situ Tests in Geotechnical Engineering . ASCE, New York, 1986, 281–302
6 Shibata T, Teparaksa W. Evaluation of liquefaction potentials of soils using cone penetration tests. Soil and Foundation , 1988, 28(2): 49–60
doi: 10.3208/sandf1972.28.2_49
7 Christian J T, Swiger W F. Statistics of liquefaction and SPT results. Journal of Geotechnical Engineering , 1975, 101(11): 1135–1150
8 Haldar A, Tang W H. Probabilistic evaluation of liquefaction potential. Journal of Geotechnical Engineering , 1979, 104(2): 145–162
9 Liao S S C, Veneziano D, Whitman R V. Regression models for evaluating liquefaction probability. Journal of Geotechnical Engineering , 1988, 114(4): 389–411
doi: 10.1061/(ASCE)0733-9410(1988)114:4(389)
10 Hsein Juang C, Yuan H, Lee D H, Ku C S. Assessing CPT-based methods for liquefaction evaluation with emphasis on the cases from the Chi-Chi, Taiwan, earthquake. Soil Dynamics and Earthquake Engineering , 2002, 22(3): 241–258
doi: 10.1016/S0267-7261(02)00013-1
11 Goh A T C. Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical Engineering , 1994, 120(9): 1467–1480
doi: 10.1061/(ASCE)0733-9410(1994)120:9(1467)
12 Goh A T C. Neural-netwok modeling of CPT seismic liquefaction data. Journal of Geotechnical Engineering , 1996, 122(1): 70–73
doi: 10.1061/(ASCE)0733-9410(1996)122:1(70)
13 Saka H, Ural D N. Liquefaction assessment by Artificial Neural Networks. Electronics journal of geotechnical engineering , 2002, 3
14 Goh A T C. Probablistic neural network for evaluating seismic liquefaction potential. Canadian Geotechnical Journal , 2002, 39(1): 219–232
doi: 10.1139/t01-073
15 Park D, Rilett, L R. Forecasting freeway link ravel times with a multi-layer feed forward neural network. Computer Aided Civil And Znfa Structure Engineering , 1999, 14: 358–367
16 Kecman V. Learning and Soft Computing—Support Vector Machines, Neural Networks, and Fuzzy Logic Models. Massachusetts, Cambridge, London , England: the MIT press, 2001
17 Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1995
18 Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. In: Hussler D, ed. 5th Annual ACM Workshop on COLT . Pittsburgh: ACM Press, 1992, 144–152
19 Cortes C, Vapnik V. Support-vector networks. Machine Learning , 1995, 20(3): 273–297
doi: 10.1007/BF00994018
20 Gualtieri J A, Chettri S R, Cromp R F, Johnson L F. Support vector machine classifiers as applied to AVIRIS data. In: Proceedings of the Summaries of the 8th JPL Airbrone Earth Science Workshop . Nevada, February 8–11 , 1999
21 Vapnik V N. Statistical Learning Theory. New York: Wiley, 1998
22 Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing 7. Institute of Electrical and Electronics Engineers , New York, 1997, 276–285
23 Fletcher R. Practical Methods of Optimization. 2nd ed. Chichester, Newyork: Wiley, 1987
24 Cristianini N, Shawe-Taylor J. An introduction to Support vector machine. London: Cambridge University press, 2000
25 Sincero A P. Predicting Mixing Power Using Artificial Neural Network. EWRI World Water and Environmental , 2003
26 Gunn R. Support vector machines for classification and regression. http://www.ecs.soton.ac.uk/ ~srg/ publications/ pdf/SVM.pdf, 2003
27 MathWork, Inc. Matlab user’s manual, Version 5.3. Natick , 1999
[1] Guang-qi CHEN, Yan-qiang WU, Ming-yao XIA, Zhi-yuan LI. Focal mechanics and disaster characteristics of the 2024 M 7.6 Noto Peninsula Earthquake, Japan[J]. Front. Struct. Civ. Eng., 2024, 18(9): 1378-1387.
[2] Pengfei DOU, Hao LIU, Chengshun XU, Jinting WANG, Yilong SUN, Xiuli DU. Numerical analysis on seismic response and failure mechanism of articulated pile−structure system in a liquefiable site from shaking-table experiments[J]. Front. Struct. Civ. Eng., 2024, 18(7): 1117-1133.
[3] Quang-Huy LE, Duy-Hung NGUYEN, Thanh SANG-TO, Samir KHATIR, Hoang LE-MINH, Amir H. GANDOMI, Thanh CUONG-LE. Machine learning based models for predicting compressive strength of geopolymer concrete[J]. Front. Struct. Civ. Eng., 2024, 18(7): 1028-1049.
[4] Ruohan LI, Yong YUAN, Hong CHEN, Xinxing LI, Emilio BILOTTA. Seismic responses of an intensively constructed metro station-passageway-shaft structure system[J]. Front. Struct. Civ. Eng., 2024, 18(5): 760-775.
[5] Gowtham PADMANABHAN, Ganesh Kumar SHANMUGAM. Performance assessment of prefabricated vertical drains in mitigating soil reliquefaction subjected to repeated seismic events using shaking table experiments[J]. Front. Struct. Civ. Eng., 2024, 18(3): 411-427.
[6] Zenglong LIANG, Shan LIN, Miao DONG, Xitailang CAO, Hongwei GUO, Hong ZHENG. Interpretable gradient boosting based ensemble learning and African vultures optimization algorithm optimization for estimating deflection induced by excavation[J]. Front. Struct. Civ. Eng., 2024, 18(11): 1698-1712.
[7] Yiming YANG, Chengkun ZHOU, Jianxin PENG, Chunsheng CAI, Huang TANG, Jianren ZHANG. Hybrid model-driven and data-driven method for predicting concrete creep considering uncertainty quantification[J]. Front. Struct. Civ. Eng., 2024, 18(10): 1524-1539.
[8] Yi-Feng YANG, Shao-Ming LIAO, Meng-Bo LIU. Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework[J]. Front. Struct. Civ. Eng., 2023, 17(7): 994-1010.
[9] Yu DIAO, Yiming XUE, Weiqiang PAN, Gang ZHENG, Ying ZHANG, Dawei ZHANG, Haizuo ZHOU, Tianqi ZHANG. A 3D sliced-soil–beam model for settlement prediction of tunnelling using the pipe roofing method in soft ground[J]. Front. Struct. Civ. Eng., 2023, 17(12): 1934-1948.
[10] Chana PHUTTHANANON, Pornkasem JONGPRADIST, Duangkamol SIRIRAK, Prateep LUEPRASERT, Pitthaya JAMSAWANG. Improved prediction of pile bending moment and deflection due to adjacent braced excavation[J]. Front. Struct. Civ. Eng., 2023, 17(11): 1739-1759.
[11] Linlin GU, Wei ZHENG, Wenxuan ZHU, Zhen WANG, Xianzhang LING, Feng ZHANG. Liquefaction-induced damage evaluation of earth embankment and corresponding countermeasure[J]. Front. Struct. Civ. Eng., 2022, 16(9): 1183-1195.
[12] Abdelwahhab KHATIR, Roberto CAPOZUCCA, Samir KHATIR, Erica MAGAGNINI. Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network[J]. Front. Struct. Civ. Eng., 2022, 16(8): 976-989.
[13] Pradeep T, Pijush SAMUI, Navid KARDANI, Panagiotis G ASTERIS. Ensemble unit and AI techniques for prediction of rock strain[J]. Front. Struct. Civ. Eng., 2022, 16(7): 858-870.
[14] Izhar AHMAD, Kashif Ali KHAN, Tahir AHMAD, Muhammad ALAM, Muhammad Tariq BASHIR. Influence of accelerated curing on the compressive strength of polymer-modified concrete[J]. Front. Struct. Civ. Eng., 2022, 16(5): 589-599.
[15] Zaobao LIU, Yongchen WANG, Long LI, Xingli FANG, Junze WANG. Realtime prediction of hard rock TBM advance rate using temporal convolutional network (TCN) with tunnel construction big data[J]. Front. Struct. Civ. Eng., 2022, 16(4): 401-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed