Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2014, Vol. 8 Issue (4) : 362-372    https://doi.org/10.1007/s11709-014-0083-y
RESEARCH ARTICLE
Shear-critical reinforced concrete columns under various loading rates
Witarto WITARTO1, Liang LU2(), Rachel Howser ROBERTS3, Y. L. MO1, Xilin LU2
1. Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. Energo Engineering, A KBR Company, Houston, TX 77002, USA
 Download: PDF(2636 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents an experimental study of shear-governed reinforced concrete columns subjected to different loading rates. Four typical short columns were tested cyclically with loading rate of 0.05, 1, 3, and 5 Hz, simulating seismic load. Test result indicated that the loading rate does not affect the column behavior when the rate is up to 5 Hz. Furthermore, Carbon Nano-Fiber Aggregates (CNFAs) were utilized as internal sensors to detect the damage in the column. The test result shows that the CNFAs work well sensing the structural behavior. The CNFA output was further quantitatively correlated to the structural damage level. Finally, a finite element analytical model was constructed to describe the behavior of short columns with shear failure. The analytical model successfully modeled the cyclic loading test results.

Keywords reinforced concrete columns      shear failure      loading rate      Carbon Nano-Fiber Aggregates (CNFAs)      finite element analysis      OpenSees     
Corresponding Author(s): Liang LU   
Online First Date: 11 December 2014    Issue Date: 12 January 2015
 Cite this article:   
Witarto WITARTO,Liang LU,Rachel Howser ROBERTS, et al. Shear-critical reinforced concrete columns under various loading rates[J]. Front. Struct. Civ. Eng., 2014, 8(4): 362-372.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-014-0083-y
https://academic.hep.com.cn/fsce/EN/Y2014/V8/I4/362
Fig.1  Four-probe method to determining electrical resistance in CNFA (Howser [20])
bar # ID yield strength/MPa diameter/mm area/mm2
8 235 8 50.24
25 335 25 490.9
Tab.1  Reinforcement bar nominal properties
Fig.2  (a) Cross-section of RC column; (b) plan view of RC column
Fig.3  CNFA installed inside RC column specimen
Fig.4  Circuit diagram of a typical CNFA-Resistor-DAS connection (Howser [20])
Fig.5  Test setup with horizontal actuator and RC column specimen
No horizontal displacemen/mm No horizontal displacement/mm No horizontal displacement/mm
1 ± 0.5 17 ± 8.5 33 ± 16.5
2 ± 1 18 ± 9 34 ± 17
3 ± 1.5 19 ± 9.5 35 ± 17.5
4 ± 2 20 ± 10 36 ± 18
5 ± 2.5 21 ± 10.5 37 ± 18.5
6 ± 3 22 ± 11 38 ± 19
7 ± 3.5 23 ± 11.5 39 ± 19.5
8 ± 4 24 ± 12 40 ± 20
9 ± 4.5 25 ± 12.5 41 ± 21
10 ± 5 26 ± 13 42 ± 22
11 ± 5.5 27 ± 13.5 43 ± 23
12 ± 6 28 ± 14 44 ± 24
13 ± 6.5 29 ± 14.5 45 ± 25
14 ± 7 30 ± 15 46 ± 26
15 ± 7.5 31 ± 15.5
16 ± 8 32 ± 16
Tab.2  Cyclic loading protocol adopted for RC column specimens
Fig.6  Global force-horizontal displacement curves for RC columns
Fig.7  Damaged RC column specimens at failure. (a) Column 1 [0.05?Hz]; (b) Column 2 [1?Hz]; (c) Column 3 [3?Hz] (d) Column 4 [5?Hz]
Fig.8  Global force-horizontal displacement envelope curves for RC columns
Fig.9  Variation of measured hor. force, displacement and ERV (CNFA) with time for RC Column-3
Fig.10  Measured ΔERV versus displacement for RC columns
Fig.11  Proposed ΔERV versus displacement relationship for RC column
Fig.12  Finite element model of shear critical RC column
Fig.13  Experimental and analytical force-displacement relationship of RC Column-3
ultimate force/kN Column-1 Column-2 Column-3 Column-4 analysis result/kN
maximum 202 261.1 214.8 230 213.9
minimum −216 −234.9 −226.6 −235.1 −213.2
Tab.3  Comparison of analytical and experimental ultimate force for RC columns
1 T T C Hsu, Y L Mo. Unified Theory of Concrete Structures. Chichester: John Wiley and Sons Ltd, 2010
2 M J N Priestley, R Verma, Y Xiao. Seismic shear strength of reinforced concrete columns. Journal of Structural Engineering, 1994, 120(8): 2310−2329
3 H Sezen, J P Moehle. Shear strength model for lightly reinforced concrete columns. Journal o Structural Engineering, 2004, 130(11): 1692−1703.
4 F J Vecchio, M P Collins. Stress-strain characteristic of reinforced concrete in pure shear. In: IABSE Colloquiumm, Advanced Mechanics of Reinforced Concrete, Delft, Final Report, International Association of Bridge and Structural Engineering. Zurich, 1981, 221−225
5 F J Vecchio, M P Collins. The Response of Reinforced Concrete to In-plane Shear and Normal Stresses. Toronto: Publication 82-03 (ISBN 0-7727-7029-8), Department of Civil Engineering, University of Toronto, 1982
6 F J Vecchio, M P Collins. The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal Proceedings, 1986, 83(2): 219−231
7 T T C Hsu, L X Zhang. Nonlinear analysis of membrane elements by fixed-angle softened-truss model. ACI Structural Journal, 1997, 94(5): 483−492
8 T T C Hsu, R R H Zhu. Softened membrane model for reinforced concrete elements in shear. Structural Journal of the American Concrete Institute, 2002, 99(4): 460−469
9 T T C Hsu, M Y Mansour, Y L Mo, J Zhong. Cyclic softened membrane model for nonlinear finite element analysis of concrete structures. ACI Special Publications, 2006, 237: 71−98
10 Y L Mo, J X Zhong, T T C Hsu. Seismic simulation of rc wall-type structures. Engineering Structures, 2008, 30(11): 3167−3175
11 F J Vecchio. Disturbed stress field model for reinforced concrete: Formulation. Journal of Structural Engineering, 2000, 126(9): 1070−1077
12 F J Vecchio. Disturbed stress field model for reinforced concrete: Implementation. Journal of Structural Engineering, 2001, 127(1): 12−20
13 J X Zhong. Model-based simulation of reinforced concrete plane stress structures. Dissertation for the Doctoral Degree. Houston: University of Houston, 2005
14 H C Fu, M A Erki, M Seckin. Review of effects of loading rate on concrete in compression. Journal of Structural Engineering, 1991, 117(12): 3645−3659
15 H C Fu, M A Erki, M Seckin. Review of effects of loading rate on reinforced concrete. Journal of Structural Engineering, 1991, 117(12): 3660−3679
16 C A Ross, D M Jerome, J Tedesco, M L Hughes. Moisture and strain rate effects on concrete strength. ACI Materials Journal, 1996, 93(3): 293−300
17 C A Ross, J W Tedesco, S T Kuennen. Effects of strain rate on concrete strength. ACI Materials Journal, 1995, 92(1): 37−47
18 D Gao, M Sturm, Y L Mo. Electrical resistance of carbon-nanofiber concrete. Smart Materials and Structures, 2009, 18(9): 095039
19 R N Howser, H B Dhonde, Y L Mo. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Materials and Structures, 2011, 20(8): 085031
20 R N Howser. Development of multifunctional carbon nanofiber aggregate for concrete structural health monitoring. Dissertation for the Doctoral Degree. Houston: University of Houston, 2013
21 OpenSees. Open system for Earthquake Engineering Simulation. Pacific Earthquake Engineering Research Center. University of California, Berkeley
22 D C Kent, R Park. Flexural members with confined concrete. Journal of the Structural Division, 1971, 97(7): 1969−1990
[1] Nang Duc BUI, Hieu Chi PHAN, Tiep Duc PHAM, Ashutosh Sutra DHAR. A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models[J]. Front. Struct. Civ. Eng., 2022, 16(6): 667-684.
[2] Lianjin TAO, Cheng SHI, Peng DING, Sicheng LI, Shang WU, Yan BAO. A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway station[J]. Front. Struct. Civ. Eng., 2022, 16(3): 359-377.
[3] Diego Maria BARBIERI, Inge HOFF, Chun-Hsing HO. Crushed rocks stabilized with organosilane and lignosulfonate in pavement unbound layers: Repeated load triaxial tests[J]. Front. Struct. Civ. Eng., 2021, 15(2): 412-424.
[4] Zhouyan XIA, Jan-Willem G. VAN DE KUILEN, Andrea POLASTRI, Ario CECCOTTI, Minjuan HE. Influence of core stiffness on the behavior of tall timber buildings subjected to wind loads[J]. Front. Struct. Civ. Eng., 2021, 15(1): 213-226.
[5] Yi RUI, Mei YIN. Finite element modeling of thermo-active diaphragm walls[J]. Front. Struct. Civ. Eng., 2020, 14(3): 646-663.
[6] Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY. Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations[J]. Front. Struct. Civ. Eng., 2020, 14(1): 62-81.
[7] Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA. Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections[J]. Front. Struct. Civ. Eng., 2020, 14(1): 169-184.
[8] Yonghui WANG, Ximei ZHAI. Development of dimensionless P-I diagram for curved SCS sandwich shell subjected to uniformly distributed blast pressure[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1432-1445.
[9] Jordan CARTER, Aikaterini S. GENIKOMSOU. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1520-1530.
[10] Hassan ABEDI SARVESTANI. Parametric study of hexagonal castellated beams in post-tensioned self-centering steel connections[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1020-1035.
[11] Alireza FARZAMPOUR, Matthew Roy EATHERTON. Parametric computational study on butterfly-shaped hysteretic dampers[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1214-1226.
[12] Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH. Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1251-1270.
[13] Mounir Ait BELKACEM, Hakim BECHTOULA, Nouredine BOURAHLA, Adel Ait BELKACEM. Effect of axial load and transverse reinforcements on the seismic performance of reinforced concrete columns[J]. Front. Struct. Civ. Eng., 2019, 13(4): 831-851.
[14] Babak DIZANGIAN, Mohammad Reza GHASEMI. Border-search and jump reduction method for size optimization of spatial truss structures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 123-134.
[15] Il-Sang AHN, Lijuan CHENG. Seismic analysis of semi-gravity RC cantilever retaining wall with TDA backfill[J]. Front. Struct. Civ. Eng., 2017, 11(4): 455-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed