Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (1) : 112-120    https://doi.org/10.1007/s11709-015-0322-x
RESEARCH ARTICLE
Chloride binding and time-dependent surface chloride content models for fly ash concrete
S. MUTHULINGAM1,B. N. RAO2,*()
1. Department of Civil Engineering, SSN College of Engineering, Kalavakkam 603 110, India
2. Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
 Download: PDF(1053 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Corrosion of embedded rebars is a classical deterioration mechanism of reinforced concrete structures exposed to chloride environments. Such environments can be attributed to the presence of seawater, deicing or sea-salts, which have high concentrations of chloride ion. Chloride ingress into concrete, essential for inducing rebar corrosion, is a complex interaction between many physical and chemical processes. The current study proposes two chloride ingress parameter models for fly ash concrete, namely: 1) surface chloride content under tidal exposure condition; and 2) chloride binding. First, inconsistencies in surface chloride content and chloride binding models reported in literature, due to them not being in line with past research studies, are pointed out. Secondly, to avoid such inconsistencies, surface chloride content and chloride binding models for fly ash concrete are proposed based upon the experimental work done by other researchers. It is observed that, proposed models are simple, consistent and in line with past research studies reported in literature.

Keywords binding isotherms      chloride ingress      concrete      fly ash      surface chloride content     
Corresponding Author(s): B. N. RAO   
Online First Date: 07 December 2015    Issue Date: 19 January 2016
 Cite this article:   
S. MUTHULINGAM,B. N. RAO. Chloride binding and time-dependent surface chloride content models for fly ash concrete[J]. Front. Struct. Civ. Eng., 2016, 10(1): 112-120.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-015-0322-x
https://academic.hep.com.cn/fsce/EN/Y2016/V10/I1/112
Fig.1  Plot of Song et al. [7] and Chalee et al. [16] time-dependent Cs models
C s (t in years) Reference
2   t kg/m3, 2 t kg/m3 Amey at al. [25]
0.38   t 0.37 % wt. of concrete Costa and Appleton [26]
3.0431+ 0.6856 ln ( t ) % wt. of cement Song et al. [7]
[ 0.379 ( w / b ) + 2.064 ] ln ( t ) % wt. of binder Chalee et al. [16]
0.26 [ ln ( 3.77 t + 1 ) ] + 1.38 % wt. of binder Pack et al. [27]
10 [ 0.841 ( w / b ) 0.213 ] + 2.11 t % wt. of binder Petcherdchoo [17]
Tab.1  Time-dependent surface chloride content ( C s ) models reported in literature for tidal exposure condition
Fig.2  Surface chloride profiles from the developed model VS other models for the real field data of Bentz et al. [28]
Fig.3  Nonlinear binding and binding capacity based on Ishida et al. [20]
specimen ψ α L ψ β L ψ α F ψ β F
0% fly ash 34.27 2.83 8.20 0.32
25% fly ash 37.17 2.24 10.12 0.38
Tab.2  Binding isotherms constants for 0 and 25 % fly ash at 0.50 water/binder ratio based on Zibara [23]
Fig.4  “Best fit” binding isotherms for 0 and 25 % fly ash at 0.50 water/binder ratio based on Zibara [23]
Binding isotherm constant η 1 η 2
ψ α L 34.2715 0.1161
ψ β L 2.8349 − 0.0237
ψ α F 8.2051 0.0767
ψ β F 0.3237 0.0022
Tab.3  Values of η 1 and η 2 for binding isotherms constants based on Zibara [ 23]
f/% binding isotherm constant
ψ α L (m3 of pore solution/m3 of concrete) ψ β L (m3 of pore solution/kg) ψ α F (m3 of pore solution/m3 of concrete) ψ β F
0 0.4621 0.0799 1.2354 0.3237
15 0.4855 0.0699 1.2486 0.3573
25 0.5012 0.0632 1.2483 0.3796
35 0.5169 0.0565 1.2408 0.4021
50 0.5404 0.0465 1.2158 0.4357
Tab.4  Idealized values of binding isotherms constants for concrete
Fig.5  Binding isotherms constants value at different fly ash replacement level
Fig.6  Chloride binding isotherms at different fly ash replacement level. (a) Langmuir; (b) Freundlich
Fig.7  Predicted chloride profiles from the developed model vs. other experimental chloride profiles
1 Schiessl  P, Raupach  M. Influence of concrete composition and microclimate on the critical chloride content in concrete. In: Page  C L, Treadaway  K W J, Bamforth  P B, eds. Corrosion of reinforcement in concrete. London (UK): Elsevier Applied Science, 1990, 49–58
2 Glass  G K, Buenfeld  N R. The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 1997, 39(5): 1001–1013
3 Zhang  J Y, Lounis  Z. Nonlinear relationships between parameters of simplified diffusion-based model for service life design of concrete structures exposed to chlorides. Cement and Concrete Composites, 2009, 31(8): 591–600
4 Kayyali  O A, Qasrawi  M S. Chloride binding capacity in cement-fly-ash pastes. Journal of Materials in Civil Engineering, 1992, 4(1): 16–26
5 Cheewaket  T, Jaturapitakkul  C, Chalee  W. Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Construction & Building Materials, 2010, 24(8): 1352–1357
6 Saetta  A V, Scotta  R V, Vitaliani  R V. Analysis of chloride diffusion into partially saturated concrete. ACI Structural Journal, 1993, 90(5): 441–451
7 Song  H W, Lee  C H, Ann  K Y. Factors influencing chloride transport in concrete structures exposed to marine environments. Cement and Concrete Composites, 2008, 30(2): 113–121
8 Bastidas-Arteaga  E, Chateauneuf  A, Sanchez-Silva  M, Bressolette  P, Schoefs  F. A comprehensive probabilistic model of chloride ingress in unsaturated concrete. Engineering Structures, 2011, 33(3): 720–730
9 Bertolini  L. Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 2008, 4(2): 123–137
10 O’Neill Iqbal  P, Ishida  T. Modeling of chloride transport coupled with enhanced moisture conductivity in concrete exposed to marine environment. Cement and Concrete Research, 2009, 39(4): 329– 339
11 Baroghel-Bouny  V, Thiéry  M, Wang  X. Modelling of isothermal coupled moisture−ion transport in cementitious materials. Cement and Concrete Research, 2011, 41(8): 828–841
12 Johannesson  B F. A theoretical model describing diffusion of a mixture of different types of ions in pore solution of concrete coupled to moisture transport. Cement and Concrete Research, 2003, 33(4): 481–488
13 Samson  E, Marchand  J. Modeling the effect of temperature on ionic transport in cementitious materials. Cement and Concrete Research, 2007, 37(3): 455–468
14 Martin-Perez  B, Zibara  H, Hooton  R D, Thomas  M D A. A study of the effect of chloride binding on service life predictions. Cement and Concrete Research, 2000, 30(8): 1215–1223
15 Ann  K Y, Ahn  J H, Ryou  J S. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction & Building Materials, 2009, 23(1): 239–245
16 Chalee  W, Jaturapitakkul  C, Chindaprasirt  P. Predicting the chloride penetration of fly ash concrete in seawater. Marine Structures, 2009, 22(3): 341–353
17 Petcherdchoo  A. Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete. Construction & Building Materials, 2013, 38: 497–507
18 Yuan  Q, Shi  C, De Schutter  G, Audenaert  K, Deng  D. Chloride binding of cement-based materials subjected to external chloride environment − a review. Construction & Building Materials, 2009, 23(1): 1–13
19 Dhir  R K, ElMohr  M A K, Dyer  T D. Chloride binding in GGBS concrete. Cement and Concrete Research, 1996, 26(12): 1767–1773
20 Ishida  T, Miyahara  S, Maruya  T. Chloride binding capacity of mortars made with various Portland cements and mineral admixtures. Journal of Advanced Concrete Technology, 2008, 6(2): 287–301
21 Mangat  P S, Limbachiya  M C. Effect of initial curing on chloride diffusion in concrete repair materials. Cement and Concrete Research, 1999, 29(9): 1475–1485
22 Luping  T, Gulikers  J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cement and Concrete Research, 2007, 37(4): 589–595
23 Zibara  H. Binding of external chlorides by cement pastes. Dissertation for the Doctoral Degree. Toronto: University of Toronto, 2001
24 Glass  G K, Buenfeld  N R. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science, 2000, 42(2): 329–344
25 Amey  S L, Johnson  D A, Miltenberger  M A, Farzam  H. Predicting the service life of concrete marine structures: An environmental methodology. ACI Structural Journal, 1998, 95(2): 205–214
26 Costa  A, Appleton  J. Chloride penetration into concrete in marine environment- Part I: Main parameters affecting chloride penetration. Materials and Structures, 1999, 32(218): 252–259
27 Pack  S W, Jung  M S, Song  H W, Kim  S H, Ann  K Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cement and Concrete Research, 2010, 40(2): 302–312
28 Bentz  E C, Evans  C M, Thomas  M D A. Chloride diffusion modelling for marine exposed concretes. In: Page C L, Bamforth P B, Figg J W, eds. Corrosion of Reinforcement in Concrete Construction. Cambridge (UK): The Royal Society of Chemistry Publication, 1996, 136–145
29 Tang  L P, Nilsson  L O. Chloride binding-capacity and binding isotherms of opc pastes and mortars. Cement and Concrete Research, 1993, 23(2): 247–253
30 Neville  A. Chloride attack of reinforced-concrete—an overview. Materials and Structures, 1995, 28(176): 63–70
31 Thomas  M D A, Hooton  R D, Scott  A, Zibara  H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 2012, 42(1): 1–7
32 Martin-Perez  B, Pantazopoulou  S J, Thomas  M D A. Numerical solution of mass transport equations in concrete structures. Computers & Structures, 2001, 79(13): 1251–1264
33 Dhir  R K, Jones  M R. Development of chloride-resisting concrete using fly ash. Fuel, 1999, 78(2): 137–142
34 Arya  C, Buenfeld  N R, Newman  J B. Factors influencing chloride-binding in concrete. Cement and Concrete Research, 1990, 20(2): 291–300
35 Byfors  K, Hansson  C M, Tritthart  J. Pore solution expression as a method to determine the influence of mineral additives on chloride binding. Cement and Concrete Research, 1986, 16(5): 760–770
36 Page  C L, Short  N R, Eltarras  A. Diffusion of Chloride-Ions in Hardened Cement Pastes. Cement and Concrete Research, 1981, 11(3): 395–406
37 Baroghel-Bouny  V, Wang  X, Thiery  M, Saillio  M, Barberon  F. Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cement and Concrete Research, 2012, 42(9): 1207–1224
38 Shafei  B, Alipour  A, Shinozuka  M. Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite‐element framework. Cement and Concrete Research, 2012, 42(2): 365–376
39 Thomas  M D A, Matthews  J D. Performance of pfa concrete in a marine environment—10-year results. Cement and Concrete Composites, 2004, 26(1): 5–20
40 McPolin  D, Basheer  P A M, Long  A E, Grattan  K T V, Sun  T. Obtaining progressive chloride profiles in cementitious materials. Construction & Building Materials, 2005, 19(9): 666–673
[1] Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI. Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1561-1572.
[2] Fulin Qu, Wengui Li, Xiaohui Zeng, Zhiyu Luo, Kejin Wang, Daichao Sheng. Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral admixture[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1545-1560.
[3] Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1531-1544.
[4] Harun TANYILDIZI, Abdulkadir ŞENGÜR, Yaman AKBULUT, Murat ŞAHİN. Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed to high temperatures[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1316-1330.
[5] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[6] Luisa PANI, Flavio STOCHINO. Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1196-1214.
[7] Masoud RANJBARNIA, Milad ZAHERI, Daniel DIAS. Three-dimensional finite difference analysis of shallow sprayed concrete tunnels crossing a reverse fault or a normal fault: A parametric study[J]. Front. Struct. Civ. Eng., 2020, 14(4): 998-1011.
[8] Chunfeng ZHAO, Xin YE, Avinash GAUTAM, Xin LU, Y. L. MO. Simplified theoretical analysis and numerical study on the dynamic behavior of FCP under blast loads[J]. Front. Struct. Civ. Eng., 2020, 14(4): 983-997.
[9] Divahar RAVI, Aravind Raj PONSUBBIAH, Sangeetha Sreekumar PRABHA, Joanna Philip SARATHA. Experimental, analytical and numerical studies on concrete encased trapezoidally web profiled cold-formed steel beams by varying depth-thickness ratio[J]. Front. Struct. Civ. Eng., 2020, 14(4): 930-946.
[10] Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK. The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone model[J]. Front. Struct. Civ. Eng., 2020, 14(3): 792-801.
[11] Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG. Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression[J]. Front. Struct. Civ. Eng., 2020, 14(3): 760-772.
[12] Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM. Influence of loading ratio on flat slab connections at elevated temperature: A numerical study[J]. Front. Struct. Civ. Eng., 2020, 14(3): 664-674.
[13] Luthfi Muhammad MAULUDIN, Chahmi OUCIF. Computational modeling of fracture in concrete: A review[J]. Front. Struct. Civ. Eng., 2020, 14(3): 586-598.
[14] Yasmin MURAD, Wassel AL BODOUR, Ahmed ASHTEYAT. Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets[J]. Front. Struct. Civ. Eng., 2020, 14(2): 554-568.
[15] Xiao-Yong WANG. Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride ingress[J]. Front. Struct. Civ. Eng., 2020, 14(2): 473-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed