Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (1) : 103-111    https://doi.org/10.1007/s11709-015-0328-4
RESEARCH ARTICLE
A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D
Jiu-jiang WU1,2,Yan LI2,Qian-gong CHENG2,*(),Hua WEN1,Xin LIANG2,3
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
2. Department of Geological Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. Faculty of Civil Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
 Download: PDF(1296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The numerical analysis of pile-soil interaction commonly requires a lot of trial works to determine the interface parameters and the accuracy cannot be ensured normally. Considering this, this paper first conducts a sensitivity analysis to figure out the influence of interface parameters on the bearing behavior of a single pile in sand. Then, a simplified method for the determination of pile-soil interface parameters in layered soil is proposed based on the parameter studies. Finally, a filed loading test is used for the validation of the simplified method, and the calculated results agree well with the monitoring data. In general, the simplified method proposed in this paper works with higher accuracy and consumes less time compared with the traditional trial works, especially on the determinations of interfacial cohesive and interfacial friction angle.

Keywords determination of interface parameters      pile-soil interaction      FLAC3D      sensitivity analysis      layered soil     
Corresponding Author(s): Qian-gong CHENG   
Online First Date: 18 December 2015    Issue Date: 19 January 2016
 Cite this article:   
Qian-gong CHENG,Hua WEN,Xin LIANG, et al. A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D[J]. Front. Struct. Civ. Eng., 2016, 10(1): 103-111.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-015-0328-4
https://academic.hep.com.cn/fsce/EN/Y2016/V10/I1/103
Fig.1  Numerical model and interface element. (a) Numerical model; (b) interface element
items ρ/ (kg·m−3) E/MPa K/MPa G/MPa c (kPa) φ/ (°) μ
fine sand Q3al 1900 33 27.5 12.69 2 35 0.2
pile Q3al 2500 3 × 104 1670 1250 0.3
Tab.1  Parameters of pile and soil
Fig.2  Varying curves of fs with different kn. (a) Position of 2-m depth; (b) position of 7-m depth
Fig.3  Varying curves of fs with different ks. (a) Position of 2-m depth; (b) position of 7-m depth
Fig.4  Varying curves of fs with different cc. (a) Position of 2-m depth; (b) position of 7-m depth
Fig.5  Relationship between the ultimate skin friction and the soil pressure under different cc
Fig.6  Varying curves of fs with different φc. (a) Position of 2-m depth; (b) position of 7-m depth
Fig.7  Relationship between the ultimate skin friction and the soil pressure under different φc
Fig.8  The flow chart for the determination of pile-soil interface parameters
Fig.9  Profile of soil layers and test pile
items Poisson’s ratio bulk modulus /MPa shear modulus /MPa cohesive /kPa internal friction angle /(°) density /(kg·m-3)
mucky clay 0.3 5.33 2.46 14 11.5 1670
silty clay 0.4 60.00 12.86 15 22 1980
sandy silt 0.3 35.00 16.15 3 32.5 1870
fine sand 0.3 41.67 19.23 1 33.5 1920
silty sand 0.3 166.67 76.92 2 34 1910
coarse sand 0.3 333.33 153.85 5 32 2020
C50 concrete(pile body) 0.2 19166 14375 2400
Tab.2  Parameters for soil and pile
Fig.10  Distribution of the soil pressure around pile body
items cc/kPa φc/(°)
mucky clay 0 0
silty clay 4 6
sandy silt 1 12
fine sand 1 19
silty sand 1 24
coarse sand 3 23
Tab.3  Initial values of cc and φc in each soil layer
items kn/kPa ks/kPa cc/kPa φc/(°)
mucky clay 246 2.46 0 0
silty clay 1286 30 3.8 6
sandy silt 1615 32.3 1.1 12
fine sand 1923 57.7 1 19.5
silty sand 7692 215 1.45 25
coarse sand 15385 308 3.75 24.5
Tab.4  Determinate values of interface parameters in each soil layer
Fig.11  Comparison of measured and calculated Q-s curves
Fig.12  Measured and calculated fs curves. (a) Measured data; (b) calculated data
1 Zhang  G, Zhang  J M. Numerical modeling of soil-structure of a concrete-faced rockfill dam. Computers and Geotechnics, 2009, 36(5): 762–772
2 Zhou  A, Lu  T, Yao  L. Current research and prospect of mechanical behaviors of soil-structure interfaces. Journal of Hohai University, 2007, 35(5): 524–528 
3 Zhang  D J, Lu  T H. Establishment and application of an interface model between Soil and Structure. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 62–66 (in Chinese)
4 Jin  C Y, Feng  X T. Research and application of nonlinear elastic-hardening interfacial constitutive model in disturbed belt. Material Research Innovations, 2011, 12(s1): 605–608
5 Yang  Y, Liu  Z. Contact surface element method for three-dimensional elastic contact problems. Lixue Xuebao, 1996, 28(5): 613–619
6 Goodman  R F, Taylor  R L, Brekke  T L. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM3): 637–660
7 Acer  Y B, Durgunoglu  H T, Yumay  M T. Interface properties of sands. Journal of the Soil Mechanics and Foundations Division, 1982, 108(4): 648–654
8 Potyondy  J G. Skin friction between various soils and construction material. Geotechnique, 1961, 11(4): 339–353
9 Vogelsang  J, Huber  G, Triantafyllidis  T. A large-scale soil-structure interface testing device. Geotechnical Testing Journal, 2013, 36(5): 613–625
10 Taha  A, Fall  M. Shear behavior of sensitive marine clay-concrete interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(4): 644–650
11 Cai  Y, Zhu  H, Zhuang  X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering, 2014, 7(4): 369–378
12 Wu  W, Zhu  H, Zhuang  X, Ma  G, Cai  Y. A multi-shell cover algorithm for contact detection in the three dimensional discontinuous deformation analysis. Theoretical and Applied Fracture Mechanics, 2014, 72(SI): 136–149
13 Itasca Consulting Group, Inc. FLAC3D − Fast Lagrangian Analysis of Continua in 3 Dimensions. Ver. 3.1, User's Manual. Minneapolis: Itasca, 2006
14 Fan  Z, Wang  Y, Xiao  H, Zhang  C. Analytical method of load-transfer of single pile under expansive soil swelling. Journal of Central South University, 2007, 14(4): 575–579
15 Yin  Z, Hong  Z, Xu  G. A study of deformation in the interface between soil and concrete. Computers and Geotechnics, 1995, 17(1): 72–92
16 VuBac  N, Silani  M, Lahmer  T, Zhuang  X, Rabczuk  T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science: Part B, 2015, 96(SI): 520–535
17 VuBac  N, Rafiee  R, Lahmer  T, Zhuang  X, Rabczuk  T. Uncertainty quantification for multi-scale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2014, (68): 446–464
18 Jing  J P, Gao  G Y, Zhang  Y S. Strengthening effect of total pile lateral friction by improving rock or soil strength at pile tip. Rock and Soil Mechanics, 2009, 30(9): 2609–2615 (in Chinese)
19 Yuan  D, Huang  H, Ma  J. Three dimension nonlinear numerical analysis of negative friction of pile side in soft groud. Underground Space, 2004, 24(2): 456–460 (in Chinese)
20 Wang  W D, Li  Y H, Wu  J B. Field loading tests on large-diameter and super-long bored piles of Shanghai Center Towers. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1817–1826 (in Chinese)
[1] Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA. New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1492-1508.
[2] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[3] Qian-Qing ZHANG, Shan-Wei LIU, Ruo-Feng FENG, Jian-Gu QIAN, Chun-Yu CUI. Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system[J]. Front. Struct. Civ. Eng., 2020, 14(4): 961-982.
[4] Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm[J]. Front. Struct. Civ. Eng., 2019, 13(4): 965-980.
[5] Mohammad Reza GHASEMI, Charles V. CAMP, Babak DIZANGIAN. Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique[J]. Front. Struct. Civ. Eng., 2019, 13(4): 800-820.
[6] M. Houshmand KHANEGHAHI, M. ALEMBAGHERI, N. SOLTANI. Reliability and variance-based sensitivity analysis of arch dams during construction and reservoir impoundment[J]. Front. Struct. Civ. Eng., 2019, 13(3): 526-541.
[7] Babak DIZANGIAN, Mohammad Reza GHASEMI. Border-search and jump reduction method for size optimization of spatial truss structures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 123-134.
[8] Lingyun YOU, Zhanping YOU, Kezhen YAN. Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay[J]. Front. Struct. Civ. Eng., 2019, 13(1): 110-122.
[9] Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete[J]. Front. Struct. Civ. Eng., 2017, 11(1): 90-99.
[10] Prishati RAYCHOWDHURY,Sumit JINDAL. Shallow foundation response variability due to soil and model parameter uncertainty[J]. Front. Struct. Civ. Eng., 2014, 8(3): 237-251.
[11] Xi CHEN, Wei XU. Parametric sensitivity analysis of cellular diaphragm wall[J]. Front Struc Civil Eng, 2012, 6(4): 358-364.
[12] Xinyu HU, Zixin ZHANG, Scott KIEFFER. A real-life stability model for a large shield-driven tunnel in heterogeneous soft soils[J]. Front Struc Civil Eng, 2012, 6(2): 176-187.
[13] Hossein ASADI KALAMEH, Arash KARAMALI, Cosmin ANITESCU, Timon RABCZUK. High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method[J]. Front Struc Civil Eng, 2012, 6(2): 101-110.
[14] HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng. Dynamic test and finite element model updating of bridge structures based on ambient vibration[J]. Front. Struct. Civ. Eng., 2008, 2(2): 139-144.
[15] JI Xiaodong, QIAN Jiaru, XU Longhe. Experimental study of modal parameter identification in a simulated ambient-excited structure[J]. Front. Struct. Civ. Eng., 2007, 1(3): 281-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed