Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 158-168    https://doi.org/10.1007/s11709-016-0374-6
RESEARCH ARTICLE
Experimental study on behavior of mortar-aggregate interface after elevated temperatures
Wan WANG, Jianzhuang XIAO(), Shiying XU, Chunhui WANG
Department of Structural Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(2476 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

Keywords mortar-aggregate interface      push-out test      elevated temperatures      modeled concrete (MC)      modeled recycled aggregate concrete (MRAC)     
Corresponding Author(s): Jianzhuang XIAO   
Online First Date: 07 April 2017    Issue Date: 19 May 2017
 Cite this article:   
Wan WANG,Jianzhuang XIAO,Shiying XU, et al. Experimental study on behavior of mortar-aggregate interface after elevated temperatures[J]. Front. Struct. Civ. Eng., 2017, 11(2): 158-168.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-016-0374-6
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/158
Fig.1  Schematics of MC and MRAC. (a) MC; (b) MRAC
Fig.2  Geometric dimensions of MC (a) and MRAC(b)
strength gradew/c ratiomass (kg/m3)
watercementsand
M200.55160290.9584.73
M300.45160355.6565.32
M400.35190542.9400.10
Tab.1  Mix proportions of mortar
strength gradew/c ratiocompressive strength (MPa)elastic modulus (MPa)
M200.5526.8124065.91
M300.4539.3128030.69
M400.3547.3626738.75
Tab.2  Mechanical properties of mortar
Fig.3  MRCA
Fig.4  Casting MRAC
Fig.5  Measurement and loading system. (a) Photo; (b) schematic diagram
Fig.6  Failure modes of MC at ambient temperature. (a) MC-M40; (b) MC-M30; (c) MC-M20
Fig.7  Failure modes of MC after 200°C elevated temperatures. (a) MC-M40; (b) MC-M30; (c) MC-M20
Fig.8  Failure modes of MC after 400°C elevated temperatures. (a) MC-M40; (b) MC-M30; (c) MC-M20
Fig.9  Failure mode of MC after 600°C elevated temperatures. (a) M40; (b) M30; (c) M20
Fig.10  Failure modes of MRAC-M40 after different temperatures. (a) MRAC-M40-20; (b) MRAC-M40-200; (c) MRAC-M40-400; (d) MRAC-M40-600
Fig.11  Failure modes of MRAC-M30 after different temperatures. (a) MRAC-M30-20; (b) MRAC-M30-200; (c) MRAC-M30-400; (d) MRAC-M30-60
Fig.12  Failure modes of MRAC-M20 after different temperatures. (a) MRAC-M20-20; (b) MRAC-M20-200; (c) MRAC-M20-400; (d) MRAC-M20-600
Fig.13  Residual load-displacement curves of MC. (a) MC-M20; (b) MC-M30; (c) MC-M40
Fig.14  Residual load-displacement curves of MRAC. (a) MRAC-M20; (b) MRAC-M30; (c) MRAC-M40
elevated
temperature
decrease percentage of residual peak load
MC-M20MC-M30MC-M40MRAC-M20MRAC-M30MRAC-M40
400°C0.4%0.3%-2.3%35.5%19.7%-4.4%
600°C38.6%35.9%49.9%74.6%46.9%49.6%
Tab.3  Decreasing percentage of residual peak load after elevated temperatures
Fig.15  Simplified residual load-displacement curve
Fig.16  Residual peak load of MC and MRAC
Fig.17  Peak displacement of MC and MRAC
1 Chang Y F, Chen Y H, Sheu M S, Yao G C. Residual stress-strain relationship for concrete after exposure to high temperatures. Cement and Concrete Research, 2006, 36(10): 1999–2005
2 Rostasy F S, Hinrichsmeyer K. Structural alterations in concrete due to thermal and mechanical stresses. In: Proceedings of the International Conference on Materials Science to Construction Materials Engineering. Cersailles, 1987
3 Sideny M, Young J F, Darwin D. Concrete. Translated by Wu K, Zhang X, Yao W, et al. Beijing: Chemical Industry Press, 2005
4 Xiao J Z, Ding T. Research on recycled concrete and its utilization in building structure in China. Frontiers of Structural and Civil Engineering, 2013, 7(3): 215–226
5 Mehta P K, Monteiro P J M. Concrete structure properties and materials. 2nd ed. Englewood Cliffs: prentice Hall, 1993
6 Rao G A, Prasad R. Influence of the roughness of aggregate surface on the interface bond strength. Cement and Concrete Research, 2002, 32(2): 253–257
7 Akcaoglu T, Tokyay M, Celik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cement and Concrete Composites, 2004, 26(6): 633–638
8 Guinea G V, El-sayed K, Rocco C G, Elices M, Planas J. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete. Cement and Concrete Research, 2002, 32(12): 1961–1970
https://doi.org/10.1016/S0008-8846(02)00902-X
9 Poon C S, Shui Z H, Lam L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction & Building Materials, 2004, 18(6): 461–468
10 Xiao J Z, Li W G, Sun Z H, Lange D A, Shah S P. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 2013, 37: 276–292
11 Diamond S, Huang J D. The ITZ in concrete–a different view based on image analysis and SEM observations. Cement and Concrete Composites, 2001, 23(2-3): 179–188
12 Xotta G, Mazzucco G, Salomoni V A, Majorana C E, Willam K J. Composite behavior of concrete materials under high temperatures. International Journal of Solids and Structures, 2015, 64: 86–99
13 Shah S P, Winter G. Inelastic behavior and fracture of concrete. ACI Special Publications, 1968, 20: 5–28
14 Buyukozturk O, Nilson A H, Slate F O. Stress-strain response and fracture of concrete in biaxial loading. ACI Journal Proceedings, 1971, 68: 590–599
15 Xiao J Z, Li W G, Sun Z H, Shah S P. Crack propagation in recycled aggregate concrete under uniaxial compressive loading. ACI Materials Journal, 2012, 109(4): 451–461
16 Xiao J Z, Li W G, Corr D J, Shah S P. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research, 2013, 52(10): 82–99
17 Caliskan S. Aggregate/mortar interface: Influence of silica fume at the micro- and macro-level. Cement and Concrete Composites, 2003, 25(4): 557–564
18 Zhang Y F, Liu H, Qi L. Simulation of fiver pushing-out test. J Wuhan Univ Technol, 2009, 6(6): 965–969
19 Park R, Paulay T. Reinforced concrete structures. New York: John Wiley &Son Inc, 1975
20 Chan Y N, Peng G F, Anson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites, 1999, 21(1): 23–27
21 Ma Q M, Guo R X, Zhao Z M, Lin Z, He K. Mechanical properties of concrete at high temperature–A review. Construction & Building Materials, 2015, 93: 371–383
22 Piasta J, Sawicz Z, Rudzinski L. Changes in the structure of hardened cement paste due to high temperature. Materiales de Construcciin, 1984, 17(4): 291–296
23 Peng G F, Huang Z S. Change in microstructure of hardened cement paste subjected to elevated temperatures. Construction & Building Materials, 2008, 22(4): 593–599
24 Ibrahim R K, Hamid R, Taha M R. Fire resistance of high-volume fly ash mortars with nanosilica addition. Construction & Building Materials, 2012, 36: 779–786
25 Taylor H F W. Cement chemistry. 2nd ed. Thomas Telford, 1997
26 Lin W M, Lin T D, Powers-Couche L J. Microstructures of fire-damaged concrete. ACI Materials Journal, 1996, 93(3): 199–205
[1] Jianan QI, Yuqing HU, Jingquan WANG, Wenchao LI. Behavior and strength of headed stud shear connectors in ultra-high performance concrete of composite bridges[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1138-1149.
[2] Mohammed FARUQI, Mohammed Sheroz KHAN. Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 81-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed