Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (1) : 67-80    https://doi.org/10.1007/s11709-017-0399-5
RESEARCH ARTICLE
Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation
Sergio A. MARTÍNEZ-GALVÁN(), Miguel P. ROMO
Institute of Engineering, National University of Mexico, Mexico City 04510, Mexico
 Download: PDF(4319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The new type of deep foundation for buildings on saturated, compressible-low strength clayey soil deposits, branded structural cell essentially consists of a rigid concrete top slab, structurally connected to reinforced concrete peripheral walls (diaphragms) that enclose the natural soil. Accordingly, as the initial volume of the confined soft clays within the lateral stiff diaphragms will remain constant upon loading, the hollowed structural cell will be “transformed” into a very large cross-section pillar of unit weight slightly higher than that of the natural soft clayey soil. This type of foundation seems to be a highly competitive alternative to the friction pile-box foundations (widely used in Mexico City clays), due to its economic and environmental advantages. Economies result, for example, from the absence of huge excavations hence sparing the need of earth retaining structures. Further savings result from appreciably smaller concrete volumes required for building the structural cell than the friction pile-box foundation; moreover, the construction time of the former is much shorter than that of the latter. Regarding the impact to the environment, less air contamination follows from the fact that both traffic jams and soil excavation lessen appreciably. Considering these facts and others regarding scheduling, it was decided to replace 48-friction pile-box foundations specified in the master plan project by this new type of foundation. The overall behavior of these cell foundations over a five-year period is fared from close visual observations and their leveling during the first three years after their construction.

Keywords deep foundations      bearing capacity      resistant moment      structural cell      3D numerical modeling     
Corresponding Author(s): Sergio A. MARTÍNEZ-GALVÁN   
Online First Date: 16 June 2017    Issue Date: 08 March 2018
 Cite this article:   
Sergio A. MARTÍNEZ-GALVÁN,Miguel P. ROMO. Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation[J]. Front. Struct. Civ. Eng., 2018, 12(1): 67-80.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0399-5
https://academic.hep.com.cn/fsce/EN/Y2018/V12/I1/67
Fig.1  Structural cell foundation diagram
Fig.2  Half of the numerical model
Depth/mUSCSdensity ρ/(kN m-3)elastic modulus E/(kPa)Poisson ratio νcohesion c/(kPa)internal friction angle f/(°)
0.0–6.0SM15.34076.20.3045.030.0
6.0–8.0CH11.73105.20.4920.00.0
8.0–9.0SC14.04215.30.3057.725.0
9.0–10.0CH12.82239.40.4920.00.0
10.0–11.0SC14.04171.90.3057.724.0
11.0–16.0CH13.22181.40.4937.00.0
16.0–17.5CH13.02687.80.4957.70.0
17.5–20.5CH13.22992.10.4975.00.0
20.5–23.0CH13.03041.90.4951.50.0
23.0–24.0CH13.04319.30.4976.90.0
24.0–25.0CH13.03024.70.4956.20.0
25.0–27.0SM15.07681.00.3093.039.8
27.0–29.0SM15.09655.20.3075.231.8
29.0–32.5SM15.010608.60.3090.134.4
32.5–34.0SM15.012412.90.30113.137.2
Tab.1  Short-term soil mechanical parameters
depth/mUSCSshear modulus G/(kPa)
0.0–6.0SM9678.0
6.0–8.0CH6605.0
8.0–9.0SC8520.0
9.0–10.0CH6159.0
10.0–11.0SC8507.0
11.0–16.0CH7320.0
16.0–17.5CH7019.0
17.5–20.5CH6685.0
20.5–23.0CH6852.0
23.0–24.0CH6206.0
24.0–25.0CH6794.0
25.0–27.0SM10312.0
27.0–29.0SM13712.0
29.0–32.5SM16187.0
32.5–34.0SM19280.0
Tab.2  Soil mechanical parameters for pseudo-static analysis
depth/mUSCScohesion ć/kPainternal friction angle f´/(°)Poisson ratio νvirgin coefficient of volume change mvv/m2N-1recompression coefficient of volume change mvr/ m2N-1OCR
0.0–6.0SM45.030.00.30---------
6.0–8.0CH20.019.50.301.6200.54000.98
8.0–9.0SC57.725.00.30---------
9.0–10.0CH10.020.00.301.0500.35001.02
10.0–11.0SC57.724.00.30---------
11.0–16.0CH21.034.40.300.4900.16331.35
16.0–17.5CH10.020.00.300.4760.15871.38
17.5–20.5CH40.046.40.300.5900.19671.45
20.5–23.0CH10.020.00.300.5450.18171.52
23.0–24.0CH10.020.00.300.4320.14401.42
24.0–25.0CH12.038.60.300.4760.15871.46
25.0–27.0SM35.039.80.30---------
27.0–29.0SM42.031.80.30---------
29.0–32.5SM45.034.40.30---------
32.5–34.0SM55.037.20.30---------
Tab.3  Long-term soil mechanical parameters
typeelastic modulus E/kPaPoisson ratio ν
fill2.50E+040.30
cover slab2.62E+070.20
walls2.21E+070.20
Tab.4  Elastic parameters of concrete elements and compacted fill
analysis directionvertical load V/kNacross load direction along load direction
horizontal load H/kNoverturning moment M/kN·mhorizontal load H/kNoverturning moment M/kN·m
across9,141.62,958.737,198.43,494.622,905.1
along9,141.62,958.718,664.23,494.639,489.8
Tab.5  Load magnitudes applied to the structural cell
Fig.3  Loading scheme for the structural cell foundation numerical analysis
Fig.4  Settlements contours generated by vertical load V
Fig.5  Vertical loading: (a) Failure mechanism (half model) and (b) undrained vertical ultimate bearing capacity
Fig.6  Cell displacements caused by overturning moment
Fig.7  (a) section across of structural cell and loading system, (b) collapse curve for structural cell rotations and c) velocity movement contours for four loading stages: A, B, C and D
Fig.8  Conceptual model to consider hardening compressibility clays
Fig.9  Pore-water pressure profiles used to calculate regional consolidation settlements
Fig.10  Consolidation settlements, across the viaduct
Fig.11  Consolidation settlements, two continuous supports, along the viaduct
Fig.12  Topographic monitoring of three structural cell foundations
date/GMTtime/GMTmagnitude/Mwlatitude/(o)Nlongitude/(o)Wdepth/kmdistance to Mexico city/km
July 29, 201410:46:146.417.63-95.66131.0418.76
July 7, 201411:23:586.914.75-92.6360.0865.89
May 10, 201407:36:016.117.16-100.9512.0321.05
May 8, 201417:00:166.417.11-100.8717.0320.28
Apr. 18, 201414:27:237.217.18-101.1910.0335.78
Aug. 21,201312:38:306.016.79-99.567.0296.87
Nov. 15, 201209:20:226.118.17-100.5240.0201.56
Nov. 7, 201216:35:517.314.08-92.3216.0930.92
Apr. 11, 201222:55:106.417.90-103.0616.0454.84
Apr. 2, 201217:36:426.016.27-98.4710.0355.15
March 20, 201218:02:477.416.25-98.5216.0356.45
Dec. 11, 201101:47:256.517.84-99.9858.0200.98
Apr. 7, 201113:11:226.717.20-94.34167.0556.49
June 6, 201107:22:276.016.22-98.038.0371.52
Tab.6  Earthquakes with magnitude greater than 6.0 between 2011 and 2015, source Centro de Instrumentación y Registro Sísmico, A.C, Mexico City
Fig.13  Current state conditions of a structural cell foundation support and adjacent support on a friction pile-box foundation, June 2016
Fig.14  Traffic lanes obstructed by supports of elevated Metro line-12. Background: friction pile-box foundations. Foreground: structural cell foundations
1 Cheng Q, Wu J, Song Z, Wen H. The behavior of a rectangular closed diaphragm wall when used as a bridge foundation. Front. Struct. Civ. Eng., 2012, 6(4): 398–420 
https://doi.org/10.1007/s11709-012-0175-5
2 Martin C M. Vertical bearing capacity of skirted circular foundations on Tresca soil. In: Proc. 15th Int. Conf. on Soil Mechanics and Geotechnical Engineering, Istanbul, 2001, 743–746
3 Brasby M F, Randolph M F. The effect of skirted foundation shape on response to combined V-M-H loadings. International Journal of Offshore and Polar Engineering, 1999, 9(5): 987–995
4 Bransby M F, Randolph M F. Combined loading of skirted foundation. Geotechnique, 1998, 48(5): 637–655
https://doi.org/10.1680/geot.1998.48.5.637
5 Saito T, Yoshida Y, Itoh M, Masui N. Skirt suction foundation–application to strait crossings. 
6 Martínez-Galván S A. Simplified analysis method for a new type of foundation in soft soils. PhD thesis in engineering, National University of Mexico, Mexico, 2012, 135 (in Spanish)
7 Takaya K. Box-shaped rigid base for continuous underground wall. Journal of Civil Engineering, 1980, 65(4): 35–42 (in Japanese)
8 Katsuhiro A, Takahashi Y, Ogasawara L. Basic railway bridge design example: a wall with continuous rigid base. Foundation Work, 1982, 10(12): 70–77 (in Japanese)
9 Smoltczyk U. Geotechnical Engineering Handbook Volume 3: Elements and Structures. Berlin: Ernst&Sohn, 2003
10 Wong I H. Experience with waterproofness of basements constructed of concrete diaphragm walls in Singapore. Tunneling and Underground Space, 1997, 12(4): 491–495
https://doi.org/10.1016/S0886-7798(98)00008-X
11 Sakai K, Tazaki K. Development and applications of diaphragm walling with special section steel: NS-Box. Tunneling and Underground Space, 2003, 18(2–3): 283–289
https://doi.org/10.1016/S0886-7798(03)00037-3
12 Takaya K, Eitetsu D. Well foundation design method of diaphragm wall and in-situ horizontal load test. Civil Engineering Technology, 1980, 36(5): 48–57 (in Japanese)
13 De Luca D A, Lasagna M, Morelli di Popolo e Ticineto A. Morelli di Popolo e Ticineto A. Installation of a vertical slurry wall around an Italian quarry lake: Complications arising and simulation of the effects on groundwater flow. Environmental Geology, 2007, 53(1): 177–189
https://doi.org/10.1007/s00254-006-0632-3
14 Ng C W W, Rigby D B, Ng S W L, Lei G H. Field studies of well instrumented barrette in Hong Kong. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 60–73
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(60)
15 Ng C W W, Lei G H. Performance of long rectangular barrettes in granitic saprolites. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8): 685–696
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(685)
16 Fellenius B H, Altaee A, Kulesza R, Hayes J. O-cell testing and FE analysis of 28-M-deep barrette in Manila, Philippines. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(7): 566–575
https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(566)
17 Cassidy M J, Randolph M F, Byrne B W. A plasticity model describing caisson behaviour in clay. Applied Ocean Research, 2006, 28(5): 345–358
https://doi.org/10.1016/j.apor.2006.08.005
18 Andersen K, Muff J D, Randolph M F, Clukey E, Erbrich C, Jostad H P, Hansen B, Aubeny C, Sharma P, Supachawarote C. Suction anchors for deepwater applications. In: Proc., ISFOG, Int. Symp. on Frontiers in Offshore Geotech, Perth, Australia, 2005, 13–30
19 Budarapu P R, Sudhir Y B, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front. Struct. Civ. Eng., 2014, 8(2): 151–159
https://doi.org/10.1007/s11709-014-0247-9
20 Romo M P, Martinez-Galván S A, Garcia S, Flores O. Geotechnical design of structural cell foundation type of support cl-34 of the elevated section of the Metro Line-12. Technical Report of the Institute of Engineering at Prefabs and Transports SA de C.V., Institute of Engineering, National University of Mexico, Mexico, May, 2010 (in Spanish)
21 Romo M P, et al.Geotechnical engineering study to the new Mexico City International Airport in the ex-Lake Texcoco and Zapotlan de Juárez, Annex A.X. Technical Report of the Institute of Engineering at Airports and Auxiliary Services, Institute of Engineering, National University of Mexico, Mexico, May, 2002 (in Spanish)
22 Itasca Consulting Group Inc. FLAC3D–Fast Lagrangian Analysis of Continua in 3 Dimensions, user manual. Minneapolis, Minnesota, USA, 1997
23 Alberro J. Personal communication. 1978
24 Federal District Government. Construction Code. Official Gazette of the Federal District, Mexico, 2004 (in Spanish)
25 Mesri G, Godlewski P P. Time- and stress compressibility relationships. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417–430
[1] Shaochun WANG, Xi JIANG, Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
[2] Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
[3] Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model[J]. Front. Struct. Civ. Eng., 2017, 11(2): 228-243.
[4] Xin LIANG,Qian-gong CHENG,Jiu-jiang WU,Jian-ming CHEN. Model test of the group piles foundation of a high-speed railway bridge in mined-out area[J]. Front. Struct. Civ. Eng., 2016, 10(4): 488-498.
[5] Janaka J. KUMARA,Yoshiaki KIKUCHI,Takashi KURASHINA,Takahiro YAJIMA. Effects of inner sleeves on the inner frictional resistance of open-ended piles driven into sand[J]. Front. Struct. Civ. Eng., 2016, 10(4): 499-505.
[6] Wei-Yong WANG, Guo-Qiang LI, Bao-lin YU. An approach for evaluating fire resistance of high strength Q460 steel columns[J]. Front Struc Civil Eng, 2014, 8(1): 26-35.
[7] Mehdi VEISKARAMI, Ghasem HABIBAGAHI. Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis[J]. Front Struc Civil Eng, 2013, 7(4): 446-455.
[8] Weiming GONG, Guoliang DAI, Haowen ZHANG. Experimental study on pile-end post-grouting piles for super-large bridge pile foundations[J]. Front Arch Civil Eng Chin, 2009, 3(2): 228-233.
[9] YANG Junjie, PENG Guojun, XU Hanyong. Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression[J]. Front. Struct. Civ. Eng., 2008, 2(3): 205-210.
[10] PAN Hanming, GUO Yanlin, LIANG Shuo, PEI Shengxing, LIANG Weisheng, WANG Lewen. Stability analysis of large diameter thin-walled tube beam-columns[J]. Front. Struct. Civ. Eng., 2008, 2(2): 123-132.
[11] SHAO Xudong, LI Lifeng, YANG Jianjun. Experimental research on the creep behavior and bearing capacity of repeatedly prestressed concrete beam[J]. Front. Struct. Civ. Eng., 2007, 1(3): 305-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed