Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (4) : 396-405    https://doi.org/10.1007/s11709-017-0436-4
RESEARCH ARTICLE
Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings in Pakistan
Muhammad Usman ALI1(), Shaukat Ali KHAN2, Muhammad Yousaf ANWAR3
1. School of Civil & Environmental Engineering, National University of Sciences & Technology, Islamabad, Pakistan
2. Department of Civil Engineering, Abasyn University, Peshawar, Pakistan
3. Mechanics Division, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
 Download: PDF(1052 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent earthquakes in Pakistan (Kashmir 2005, Balochistan 2008, and Balochistan 2013) revealed the vulnerability of existing building stock and the deficiencies in the then prevalent Pakistan Seismic Code (PSC-86 (1986)). This study investigates, through an analytical framework, the seismic vulnerability of these and other such buildings, in accordance with the newly developed Building Code of Pakistan – Seismic Provisions 2007 (BCP-SP 07). Detailed failure mode is presented for buildings designed as per the new code. Collapse of structures is predicted for only 8% increase in PGA after moderate damage. A previously developed method, based on Eurocode-8 (2004), is used as baseline. A deficient reinforced concrete frame, typical to local building practices, is analyzed and assessed for vulnerability using the BCP- SP 07 (2007) framework. A comparison is drawn for the same building, based on Eurocode-8 (2004). Derived vulnerability curves show that the previous framework overestimated the damage and hence the vulnerability. Comparison of vulnerability parameters with previous studies show slight difference in performance of buildings.

Keywords Building Code of Pakistan      earthquake engineering      seismic effects      vulnerability assessment of buildings      vulnerability framework     
Corresponding Author(s): Muhammad Usman ALI   
Online First Date: 07 July 2017    Issue Date: 10 November 2017
 Cite this article:   
Muhammad Usman ALI,Shaukat Ali KHAN,Muhammad Yousaf ANWAR. Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings in Pakistan[J]. Front. Struct. Civ. Eng., 2017, 11(4): 396-405.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0436-4
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I4/396
Fig.1  Application of CSM for PGA calculation
Fig.2  Graphical representation of PGA evaluation with BCP-SP 07 (2007) Response Spectrum
Soil Typestratashear wave velocity (m/s)
SAhard rockVS>1500
SBmedium hard rock750<VS<1500
SCvery dense soil and soft rock350<VS<750
SDstiff soil175<VS<350
SEsoft clayVS<175
Tab.1  Soil Classification and properties BCP-SP 07 [8]
Cvsoil profile (SA)
Ca1Ca2Cv1Cv2Cv3
0.00≤Cv≤0.060.000.060.00Calculated value (Eq. 4)0.06
0.06≤Cv≤0.120.060.120.060.12
0.12≤Cv≤0.160.120.160.120.16
0.16≤Cv≤0.240.160.240.160.24
0.24≤Cv≤0.320.240.320.240.32
Tab.2  Interpolation values for soil profile SA
Cvsoil profile (SA)
Ca1Ca2Cv1Cv2Cv3
0.00≤Cv≤0.080.000.080.00Calculated value (Eq. 4)0.08
0.08≤Cv≤0.150.080.150.080.15
0.15≤Cv≤0.200.150.200.150.20
0.20≤Cv≤0.300.200.300.200.30
0.30≤Cv≤0.400.300.400.300.40
Tab.3  Interpolation values for soil profile SB
Cvsoil profile (SA)
Ca1Ca2Cv1Cv2Cv3
0.00≤Cv≤0.130.000.090.00Calculated value (Eq. 4)0.13
0.13≤Cv≤0.250.090.180.130.25
0.25≤Cv≤0.320.180.240.250.32
0.32≤Cv≤0.450.240.330.320.45
0.45≤Cv≤0.560.330.400.450.56
Tab.4  Interpolation values for soil profile SC
Cvsoil profile (SA)
Ca1Ca2Cv1Cv2Cv3
0.00≤Cv≤0.180.000.120.00Calculated value (Eq. 4)0.18
0.18≤Cv≤0.320.120.220.180.32
0.32≤Cv≤0.400.220.280.320.40
0.40≤Cv≤0.540.280.360.400.54
0.54≤Cv≤0.640.360.440.540.64
Tab.5  Interpolation values for soil profile SD
Cvsoil profile (SA)
Ca1Ca2Cv1Cv2Cv3
0.00≤Cv≤0.260.000.190.00Calculated value (Eq. 4)0.26
0.26≤Cv≤0.500.190.300.260.50
0.50≤Cv≤0.640.300.340.500.64
0.64≤Cv≤0.840.340.360.640.84
0.84≤Cv≤0.960.360.360.840.96
Tab.6  Interpolation values for soil profile SE
Fig.3  Flow chart for vulnerability assessment framework
Fig.4  Typical building frame and sectional details of beam/column
Fig.5  Backbone curve (Force-Displacement envelope)
Fig.6  Transformed Capacity Curve
Fig.7  Derived vulnerability curve of the selected frame
Fig.8  Comparison of vulnerability curves derived with Eurocode and BCP
Fig.9  Comparison of commencement of different damage levels from two approaches considered
Fig.10  Comparison of analytical curves with existing empirical vulnerability curve
1 Maqsood S T, Schwarz J. Seismic Vulnerability of existing building stock in Pakistan. In: The 14th World Conference on Earthquake Engineering, Beijing, China, 2008
2 MonaLisa, Khawaja A A, Jan M Q. Seismic Hazard Assessment of NW Himalayan fold and thurst belt, Pakistan, Using Probabilistic Approach. Journal of Earthquake Engineering, 2007, 11(2): 257–301
https://doi.org/10.1080/13632460601031243
3 MonaLisa. Seismic Hazard Assessment of Mansehra. Department Of Earth Sciences, Quaid -e- Azam University (QAU), Islamabad, 2008
4 Maqsood S T, Schwarz J. Development of a Building Inventory and Vulnerability Database for Pakistan, Australian Earthquake Engineering Society Conference, Barossa Valley, South Australia, 2011
5 PSC-86. Pakistan Seismic Code (PSC). Ministry of Housing, Islamic Republic of Pakistan,1986
6 Ullah A, Shahzada K, Khan A N, Naseer A, Ashraf M, Shoaib M.Seismic Resistance of Unreinforced Brick Masonry Buildings: An Experimental Study. Advance Materials Research. 2011, 255–260: 2622–2626
7 Ahmad N, Badrashi Y I, Ali Q, Crowley H, Pinho R. Development of displacement based method for seismic risk assessment of RC building stock of Pakistan. In: International conference on earthquake engineering and seismology, NUST, Islamabad, Pakistan, 2011
8 BCP-SP 07. Building Code of Pakistan. Ministry of Housing, Islamic Republic of Pakistan, 2007
9 ATC-40. Seismic evaluation and retrofit of concrete buildings. California, Redwood City, 1996
10 FEMA 440. Improvement of non-linear static seismic analysis procedures. Washington, D.C., 2005
11 Kyriakides N, Pilakoutas K, Ahmad S. Vulnerability curves for RC substandard buildings. In: The 15th World Conference on Earthquake Engineering Lisbon, Portugal, 2012
12 UBC-97. Uniform Building Code. International Council of Building Officials, USA, 1997
13 Badrashi Y I, Ali Q, Ashraf M. Reinforced concrete buildings in Pakistan. Report, World housing encyclopedia, Earthquake engineering research institute (EERI) & International Association of Earthquake engineering (IAEE), 2010
14 ACI 318-02. Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02). The American Concrete Institute, 2002
15 Prakash V, Powell G, Campbell S. Drain-3D Base Program Description and user Guide, Version 1.10. Report No. UCB/SEMM-94/07. Department Of Civil Engineering, University Of California, Berkeley, 1994
16 Powell G, Campbell S. Drain-3D Element Description and User Guide For Element Type 01, 04, 05, 08, 09, 15, 17 Version 1.10. Report No. UCB/SEMM-94/08. Department Of Civil Engineering, University Of California, Berkeley,1994
17 Eurocode 2. Design of Concrete Structures-Part 1 General Rules and Rules For Buildings. Brussels, Belgium, 2000
18 Garcia R, Hajirasouliha I, Pilakoutas K. Seismic behavior of deficient RC Frames Strengthened with CFRP Composites. Engineering Structures, 2010, 32(10): 3075–3085
https://doi.org/10.1016/j.engstruct.2010.05.026
19 Jemaa Y. Seismic design and analysis of reinforced concrete structures. M.Sc thesis, University of Sheffield, UK, 2007
20 Meslem A, D’Ayala D. Investigation into analytical vulnerability curves derivation aspects considering modelling uncertainty for infilled RC buildings. In: The 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, 2013
21 Erberik M A, Elnashai A S. Fragility analysis of flat slab structures. Engineering Structures, 2004, 26(7): 937–948
https://doi.org/10.1016/j.engstruct.2004.02.012
22 HAZUS 99. Earthquake Loss Estimation Methodology. Technical Manual. Report Prepared For The Federal Emergency Management Agency, Washington D.C., 1999
23 Rossetto T, Elnashai A S. Derivation of Vulnerability Functions for European-Type RC Structures Based On Observational Data. Engineering Structures, 2003, 25(10): 1241–1263
https://doi.org/10.1016/S0141-0296(03)00060-9
24 Rossetto T, Elnashai A S. A New Analytical Procedure for the Derivation of Displacement-Based Vulnerability Curves for Population of RC Structures. Engineering Structures, 2005, 27(3): 397–409
https://doi.org/10.1016/j.engstruct.2004.11.002
25 Eurocode 8. Design of Structures for Earthquake Resistance-Part 1 General Rules, Seismic Actions and Rules for Buildings. Brussels, Belgium, 2004
26 Ahmad S, Khan S A, Pilakoutas K, Khan Q U K. Empirical Vulnerability Assessment of the Non-Engineered Reinforced Concrete Structures Using the Kashmir Earthquake Damage Data. Bulletin of Earthquake Engineering, 2015, 13(9): 2611–2628
https://doi.org/10.1007/s10518-015-9735-0
[1] Chu MAI, Katerina KONAKLI, Bruno SUDRET. Seismic fragility curves for structures using non-parametric representations[J]. Front. Struct. Civ. Eng., 2017, 11(2): 169-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed