Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (4) : 380-387    https://doi.org/10.1007/s11709-017-0437-3
RESEARCH ARTICLE
The investigation of fly ash based asphalt binders using atomic force microscope
Rajan SAHA(), Kyle MALLOY, Emil BAUTISTA, Konstantin SOBOLEV
Department of Civil and Environmental Engineering, University of Wisconsin at Milwaukee, WI 53705, USA
 Download: PDF(14356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Atomic Force Microscope (AFM) is a relatively new technique for investigation of construction materials. In this study AFM was used to investigate the interaction of asphalt binder with fly ash. Fly ash is a coal combustion byproduct of electric power utilities having pozzolanic properties and commonly used in Portland cement concrete. In this study, an investigation was made by using different types of fly ash with two types of asphalt binders such as PG 58-28 and PG 64-28. Asphalt microstructure is divided into four subgroups such as Saturates, Aromatics, Resins and Asphaltenes (SARA). These four phases can be distinguished by the atomic force microscope. The interaction of these phases affected by introducing fly-ash was investigated and correlation with rheological properties was observed.

Keywords AFM      fly ash      bee      rheology      asphalt     
Corresponding Author(s): Rajan SAHA   
Online First Date: 05 July 2017    Issue Date: 10 November 2017
 Cite this article:   
Rajan SAHA,Kyle MALLOY,Emil BAUTISTA, et al. The investigation of fly ash based asphalt binders using atomic force microscope[J]. Front. Struct. Civ. Eng., 2017, 11(4): 380-387.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0437-3
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I4/380
Fig.1  The effect of aging on the structure of bitumen binders with nano-clay, from Sobolev et al. [13].
saturatesaromaticsresinsasphaltenes
n- and iso- alkanes (simple and least reactive hydrocarbon)a type of hydro-carbon which has alternating double and single bonds between carbon atoms forming ringsviscous liquidcarbon, hydrogen, nitrogen, oxygen, and sulfur as well as trace amounts of vanadium and nickel
Tab.1  Chemical composition of asphalt [1]
materials IDclasschemical composition, %
Al2O3CaOFe2O3SiO2MgONa2OK2OTiO2P2O3SO3
WE05C22.324.65.432.96.32.80.51.31.61.8
WE08C23.923.14.534.45.32.20.61.31.52.1
WE07F27.25.014.045.61.00.71.81.10.52.7
Tab.2  Chemical composition of fly ash [13]
Fig.2  The 2D and 3D images of PG58-28 and PG64-28 binders and effect of adding of 5% fly ash
Fig.3  The ashphalt phases detected by AFM and small area analyzed by Gwyddion
Fig.4  The AFM scans of PG58-28 based mastics
Fig.5  The AFM scans of PG64-28 based mastics
Fig.6  The effect of fly ash on crystal height as recorded by AFM
Fig.7  The effect of fly ash on resin and asphltene area as measured by AFM
Fig.8  The effect of cooling on structure of asphalt- fly ash mastic
Fig.9  The effect of fly ash on rheological response and structure of mastics with up to 40% of fly ash
1 Masson J, Leblond V, Margeson J. Bitumen morphologies by phase-detection atomic force microscopy. Journal of Microscopy, 2006, 221(1): 17–29
https://doi.org/10.1111/j.1365-2818.2006.01540.x
2 Baker H. The microscope made easy. Lincolnwood, IL: Science Heritage Ltd., 1987.
3 Morris V, Kirby A, Gunning A. Atomic force microscopy for biologists, London: Imperial College Press, 1999.
4 Binnig G, Quate C, Gerber C. Atomic force microscope. The American Physical Society, pp. 930–934, 1986.
5 Mou J, ShengS, HoR, ShaoZ , CzajkowskyD . High resolution surface structures of E. coli GroeS oligomer by atomic force microscopy. FEBS Letters, 1996, 381(1-2): 161–164
https://doi.org/10.1016/0014-5793(96)00112-3
6 Loeber L, Sutton O, Morel J, Valleton J, Muller G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. Journal of Microscopy, 1995, 182(1): 32–39
7 Pauli A, Grimes R, Beemer A, Turner T, Branthaver J. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. International Journal of Pavement Engineering, 2011, 12(4): 291–309
https://doi.org/10.1080/10298436.2011.575942
8 Lu X, Langton M, Oloffson P, Redelius P. Wax morphology in bitumen. Journal of Materials Science, 2005, 40(8): 1893–1900
https://doi.org/10.1007/s10853-005-1208-4
9 Nahar S, Schmets A, Scarpas A, Schitter G. Temperature and thermal history dependence of the microstructure in bituminous materials. European Polymer Journal, 2013, 49(8): 1964–1974
https://doi.org/10.1016/j.eurpolymj.2013.03.027
10 Rebolo L, de Sousa J, Abreu A, Baroni M, Alencar A, Soares S, Mendes Filho J, Soares J. Aging of asphaltic binders investigated with atomic force microscopy. Fuel, 2014, 117: 15–25
https://doi.org/10.1016/j.fuel.2013.09.018
11 Dourado E, Simao R, Leite L. Mechanical properties of asphalt binders evaluated by atomic force microscopy. Journal of Microscopy, 2012, 245(2): 119–128
https://doi.org/10.1111/j.1365-2818.2011.03552.x
12 Fischer H R, Dillingh E, Hermse C. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures. Applied Surface Science, 2013, 265: 495–499
https://doi.org/10.1016/j.apsusc.2012.11.034
13 Sobolev K, Flores I, Bohler J, Faheem A, Covi A. Application of fly ash in ASHphalt concrete from challenges to opportunities. We Energies, Milwaukee, WI, 2013.
14 Yu X, Burnham N A, Mallick R B, Tao M. A systematic AFM-based method to measure adhesion differences between micron sized domains in asphalt binders. Fuel, 2013, 113: 443–447
https://doi.org/10.1016/j.fuel.2013.05.084
15 Bautista E, Flicknger J, Saha R, Flores-Vivian I, Faheem A F, Sobolev K. Effect of coal combustion products on high temperature performance of asphalt mastics. Construction & Building Materials, 2015, 94: 572–578
https://doi.org/10.1016/j.conbuildmat.2015.07.022
16 Pauli A T, Branthaver J F, Robertson R E, Grimes W. Atomic force microscopy investigation of SHRP asphalts. In: Symposium on Heavy oil and resid compatibility and stability, Petroleum Chemistry Division, American Chemical Society, San Diego, California, USA, 2001.
[1] Fucheng GUO, Jiupeng ZHANG, Jianzhong PEI, Weisi MA, Zhuang HU, Yongsheng GUAN. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(2): 435-445.
[2] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[3] Dongliang HU, Jianzhong PEI, Rui LI, Jiupeng ZHANG, Yanshun JIA, Zepeng FAN. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Front. Struct. Civ. Eng., 2020, 14(1): 109-122.
[4] Fangxian LI, Cheng ZHOU, Pengfei YANG, Beihan WANG, Jie HU, Jiangxiong WEI, Qijun YU. Direct synthesis of carbon nanotubes on fly ash particles to produce carbon nanotubes/fly ash composites[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1405-1414.
[5] Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm[J]. Front. Struct. Civ. Eng., 2019, 13(4): 965-980.
[6] Chuangmin LI, Fanbo NING, Yuanyuan LI. Effect of carbon black on the dynamic moduli of asphalt mixtures and its master curves[J]. Front. Struct. Civ. Eng., 2019, 13(4): 918-925.
[7] Ali Reza GHANIZADEH, Morteza RAHROVAN. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline[J]. Front. Struct. Civ. Eng., 2019, 13(4): 787-799.
[8] Toshifumi MUKUNOKI, Ta Thi HOAI, Daisuke FUKUSHIMA, Teppei KOMIYA, Takayuki SHIMAOKA. Physical and mechanical properties of municipal solid waste incineration residues with cement and coal fly ash using X-ray Computed Tomography scanners[J]. Front. Struct. Civ. Eng., 2019, 13(3): 640-652.
[9] Lingyun YOU, Zhanping YOU, Kezhen YAN. Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay[J]. Front. Struct. Civ. Eng., 2019, 13(1): 110-122.
[10] Meng GUO, Yiqiu TAN, Linbing WANG, Yue HOU. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate[J]. Front. Struct. Civ. Eng., 2018, 12(2): 248-259.
[11] Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
[12] Qian ZHAO, Zhoujing YE. A dimensional analysis on asphalt binder fracture and fatigue cracking[J]. Front. Struct. Civ. Eng., 2018, 12(2): 201-206.
[13] Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer[J]. Front. Struct. Civ. Eng., 2018, 12(1): 16-25.
[14] Osama Ahmed MOHAMED, Omar Fawwaz NAJM. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS[J]. Front. Struct. Civ. Eng., 2017, 11(4): 406-411.
[15] Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics[J]. Front. Struct. Civ. Eng., 2017, 11(3): 329-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed