Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (2) : 520-536    https://doi.org/10.1007/s11709-021-0689-9
RESEARCH ARTICLE
Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines
Alireza TABARSA1(), Nima LATIFI2, Abdolreza OSOULI3, Younes BAGHERI4
1. Depatrment of Civil Engineering, Faculty of Engineering, Golestan University, Gorgan 49138-15759, Iran
2. Terracon Consultants, Inc., Nashville, TN 37211, USA
3. Civil Engineering Department, Southern Illinois University, Edwardsville, IL 62026-1800, USA
4. Faculty of Engineering, Mirdamad Institute of Higher Education, Gorgan 49166-53989, Iran
 Download: PDF(1577 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study aims to improve the unconfined compressive strength of soils using additives as well as by predicting the strength behavior of stabilized soils using two artificial-intelligence-based models. The soils used in this study are stabilized using various combinations of cement, lime, and rice husk ash. To predict the results of unconfined compressive strength tests conducted on soils, a comprehensive laboratory dataset comprising 137 soil specimens treated with different combinations of cement, lime, and rice husk ash is used. Two artificial-intelligence-based models including artificial neural networks and support vector machines are used comparatively to predict the strength characteristics of soils treated with cement, lime, and rice husk ash under different conditions. The suggested models predicted the unconfined compressive strength of soils accurately and can be introduced as reliable predictive models in geotechnical engineering. This study demonstrates the better performance of support vector machines in predicting the strength of the investigated soils compared with artificial neural networks. The type of kernel function used in support vector machine models contributed positively to the performance of the proposed models. Moreover, based on sensitivity analysis results, it is discovered that cement and lime contents impose more prominent effects on the unconfined compressive strength values of the investigated soils compared with the other parameters.

Keywords unconfined compressive strength      artificial neural network      support vector machine      predictive models      regression     
Corresponding Author(s): Alireza TABARSA   
Just Accepted Date: 03 March 2021   Online First Date: 20 April 2021    Issue Date: 27 May 2021
 Cite this article:   
Alireza TABARSA,Nima LATIFI,Abdolreza OSOULI, et al. Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines[J]. Front. Struct. Civ. Eng., 2021, 15(2): 520-536.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0689-9
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I2/520
Fig.1  Grain size distribution for used soils.
soil properties quantity (SM soil) quantity (MH soil) test method
sand (%) 51.70 43.52
silt (%) 28.60 33.87
clay (%) 7.80 22.61
organic content (%) 1.2 12.8
specific gravity 2.55 2.38 (ASTM D854)
USCS classification silty sand high plasticity silt (ASTM D2487)
liquid limit (%) 48.10 55.40 (ASTM D4318)
plastic limit (%) 31.50 36.40 (ASTM D4318)
plasticity index (%) 16.60 19.00 (ASTM D4318)
optimum moisture (%) 16.30 24.65 (ASTM D698)
maximum dry unit weight (kN/m3) 17.52 14.67 (ASTM D698)
pH 4.78 4.21 (ASTM D4972)
Tab.1  Summary of basic properties of investigated soils
variable UCS test for soil
C (%) 1.25, 1.875, 2.5, 3.125
L (%) 2.5, 3.75, 5, 6.25
R (%) 1.25, 1.875, 2.5, 3.125
curing time (d) 7, 28, 60
dry unit weight, γd ?(kN/ m? 3) 14, 15, 16, 17
soil type SM, MH
Tab.2  Experimental procedure for UCS tests
Fig.2  Developed ANN1 model for UCS estimation.
Fig.3  Developed ANN2 model for UCS estimation.
characteristic description/value
number of hidden layers one and two layers
number of optimum neurons in hidden layer 7 and 4
training algorithm Levenberg–Marquardt (back-propagation)
activation function in hidden layer sigmoid
activation function in output layer linear
Tab.3  ANN characteristics
SVM models kernel parameters optimum value of C optimum value of e number of support vectors
SVM-poly d= 3 1 0.0100 67
SVM-RBF s = 4 30 0.0210 58
Tab.4  Optimal values of kernel, penalty, and loss functions used in SVM models
dataset name no. of data ANN1 ANN2
R AAPE (%) AIC R AAPE (%) AIC
training 83 0.9998 3.979 3.436 0.9997 4.394 3.511
validating 27 0.9976 11.598 4.103 0.9952 8.247 4.381
testing 27 0.9957 12.349 4.289 0.9979 10.325 3.979
Tab.5  Statistical performance of ANN models
Fig.4  Correlation of measured and predicted UCS values by ANN1: (a) training; (b) validating; (c) testing datasets.
Fig.5  Correlation of measured and predicted UCS values by ANN2: (a) training; (b) validating; (c) testing datasets.
data set name no. of data SVM- Poly SVM-RBF
R AAPE (%) R AAPE (%)
training
testing
110
27
0.9913
0.9918
4.718
5.286
0.9965
0.9970
3.880
4.606
Tab.6  Statistical performances of SVM models
Fig.6  Correlation between laboratory UCS values and those predicted by SVM-poly model: (a) training and (b) testing datasets.
Fig.7  Correlation between laboratory UCS values and those predicted by SVM- RBF: (a) training and (b) testing datasets.
Fig.8  ANN and SVM predicted UCS against experimental UCS for testing dataset.
Fig.9  Prediction error variability of ANN and SVM models corresponding to testing datasets.
Fig.10  Estimated values obtained via regression analysis vs. experimental data for SM soil.
Fig.11  Estimated values obtained by regression analysis vs. experimental data for MH soil.
soil effective degree (%)
D T C L R
SM 0.001 0.001 50.013 49.811 0.174
MH 0.001 0.002 71.627 28.212 0.158
Tab.7  Sensitivity analysis results of input parameters in terms of UCS values
test no. soil type γ d (kN/m3) curing time (d) C (%) L (%) R (%) qu (kPa)
1 SM 14 7 0.000 0.000 0.000 105
2 SM 14 7 1.250 2.500 1.250 247
3 SM 14 7 1.875 3.750 1.875 300
4 SM 14 7 2.500 5.000 2.500 320
5 SM 14 7 3.125 6.250 3.125 289
6 SM 15 7 1.250 2.500 1.250 294
7 SM 15 7 1.875 3.750 1.875 461
8 SM 15 7 2.500 5.000 2.500 447
9 SM 15 7 3.125 6.250 3.125 546
10 SM 16 7 1.250 2.500 1.250 512
11 SM 16 7 1.875 3.750 1.875 684
12 SM 16 7 2.500 5.000 2.500 854
13 SM 16 7 3.125 6.250 3.125 833
14 SM 17 7 1.250 2.500 1.250 879
15 SM 17 7 1.875 3.750 1.875 975
16 SM 17 7 2.500 5.000 2.500 1300.
17 SM 17 7 3.125 6.250 3.125 1321
18 SM 14 28 1.250 2.500 1.250 274
19 SM 14 28 1.875 3.750 1.875 349.
20 SM 14 28 2.500 5.000 2.500 423
21 SM 14 28 3.125 6.250 3.125 603
22 SM 15 28 1.250 2.500 1.250 329
23 SM 15 28 1.875 3.750 1.875 584
24 SM 15 28 2.500 5.000 2.500 752
25 SM 15 28 3.125 6.250 3.125 807
26 SM 16 28 1.250 2.500 1.250 589.
27 SM 16 28 1.875 3.750 1.875 746
28 SM 16 28 2.500 5.000 2.500 1192
29 SM 16 28 3.125 6.250 3.125 1203
30 SM 17 28 1.250 2.500 1.250 890
31 SM 17 28 1.875 3.750 1.875 1421
32 SM 17 28 2.500 5.000 2.500 1865
33 SM 17 28 3.125 6.250 3.125 1724
34 SM 14 60 1.250 2.500 1.250 425
35 SM 14 60 1.875 3.750 1.875 559
36 SM 14 60 2.500 5.000 2.500 602
37 SM 14 60 3.125 6.250 3.125 812
38 SM 15 60 1.250 2.500 1.250 539
39 SM 15 60 1.875 3.750 1.875 744
40 SM 15 60 2.500 5.000 2.500 944
41 SM 15 60 3.125 6.250 3.125 1052
42 SM 16 60 1.250 2.500 1.250 783
43 SM 16 60 1.875 3.750 1.875 900
44 SM 16 60 2.500 5.000 2.500 1509
45 SM 16 60 3.125 6.250 3.125 1476
46 SM 17 60 1.250 2.500 1.250 1005
47 SM 17 60 1.875 3.750 1.875 1559
48 SM 17 60 2.500 5.000 2.500 2099
49 SM 17 60 3.125 6.250 3.125 1947
50 SM 14 7 1.250 2.500 0.000 202
51 SM 14 7 1.875 3.750 0.000 279
52 SM 14 7 2.500 5.000 0.000 306
53 SM 14 7 3.125 6.250 0.000 312
54 SM 14 28 1.250 2.500 0.000 237
55 SM 14 28 1.875 3.750 0.000 352
56 SM 14 28 2.500 5.000 0.000 377
57 SM 14 28 3.125 6.250 0.000 462
58 SM 14 60 1.250 2.500 0.000 336
59 SM 14 60 1.875 3.750 0.000 480
60 SM 14 60 2.500 5.000 0.000 522
61 SM 14 60 3.125 6.250 0.000 517
62 MH 11 0 0.000 0.000 0.000 25
63 MH 11 7 1.250 2.500 1.250 60
64 MH 11 7 1.875 3.750 1.875 63
65 MH 11 7 2.500 5.000 2.500 65
66 MH 11 7 3.125 6.250 3.125 83
67 MH 11 7 3.750 7.500 3.750 81
68 MH 12 7 1.250 2.500 1.250 67
69 MH 12 7 1.875 3.750 1.875 73
70 MH 12 7 2.500 5.000 2.500 79
71 MH 12 7 3.125 6.250 3.125 108
72 MH 12 7 3.750 7.500 3.750 86
73 MH 13 7 1.250 2.500 1.250 112
74 MH 13 7 1.875 3.750 1.875 122
75 MH 13 7 2.500 5.000 2.500 148
76 MH 13 7 3.125 6.250 3.125 176
77 MH 13 7 3.750 7.500 3.750 150
78 MH 14 7 1.250 2.500 1.250 204
79 MH 14 7 1.875 3.750 1.875 239
80 MH 14 7 2.500 5.000 2.500 262
81 MH 14 7 3.125 6.250 3.125 285
82 MH 14 7 3.750 7.500 3.750 293
83 MH 11 28 1.250 2.500 1.250 117
84 MH 11 28 1.875 3.750 1.875 121
85 MH 11 28 2.500 5.000 2.500 133
86 MH 11 28 3.125 6.250 3.125 150
87 MH 11 28 3.750 7.500 3.750 174
88 MH 12 28 1.250 2.500 1.250 125
89 MH 12 28 1.875 3.750 1.875 130
90 MH 12 28 2.500 5.000 2.500 140
91 MH 12 28 3.125 6.250 3.125 198
92 MH 12 28 3.750 7.500 3.750 199
93 MH 13 28 1.250 2.500 1.250 160
94 MH 13 28 1.875 3.750 1.875 191
95 MH 13 28 2.500 5.000 2.500 238
96 MH 13 28 3.125 6.250 3.125 323
97 MH 13 28 3.750 7.500 3.750 329
98 MH 14 28 1.250 2.500 1.250 276
99 MH 14 28 1.875 3.750 1.875 358
100 MH 14 28 2.500 5.000 2.500 373
101 MH 14 28 3.125 6.250 3.125 456
102 MH 14 28 3.750 7.500 3.750 447
103 MH 11 60 1.250 2.500 1.250 121
104 MH 11 60 1.875 3.750 1.875 135
105 MH 11 60 2.500 5.000 2.500 138
106 MH 11 60 3.125 6.250 3.125 151
107 MH 11 60 3.750 7.500 3.750 181
108 MH 12 60 1.250 2.500 1.250 151
109 MH 12 60 1.875 3.750 1.875 136
110 MH 12 60 2.500 5.000 2.500 147
111 MH 12 60 3.125 6.250 3.125 204
112 MH 12 60 3.750 7.500 3.750 209
113 MH 13 60 1.250 2.500 1.250 168
114 MH 13 60 1.875 3.750 1.875 189
115 MH 13 60 2.500 5.000 2.500 249
116 MH 13 60 3.125 6.250 3.125 338
117 MH 13 60 3.750 7.500 3.750 344
118 MH 14 60 1.250 2.500 1.250 285
119 MH 14 60 1.875 3.750 1.875 371
120 MH 14 60 2.500 5.000 2.500 386
121 MH 14 60 3.125 6.250 3.125 474
122 MH 14 60 3.750 7.500 3.750 482
123 MH 11 7 1.250 2.500 0.000 44
124 MH 11 7 1.875 3.750 0.000 60
125 MH 11 7 2.500 5.000 0.000 60
126 MH 11 7 3.125 6.250 0.000 77
127 MH 11 7 3.750 7.500 0.000 79
128 MH 11 28 1.250 2.500 0.000 88
129 MH 11 28 1.875 3.750 0.000 94
130 MH 11 28 2.500 5.000 0.000 101
131 MH 11 28 3.125 6.250 0.000 124
132 MH 11 28 3.750 7.500 0.000 156
133 MH 11 60 1.250 2.500 0.000 118
134 MH 11 60 1.875 3.750 0.000 130
135 MH 11 60 2.500 5.000 0.000 130
136 MH 11 60 3.125 6.250 0.000 145
137 MH 11 60 3.750 7.500 0.000 172
  Experimental variables and test results
1 N Cristelo, S Glendinning, L Fernandes, T A Pinto. Effects of alkaline activated fly ash and Portland cement on soft soil stabilization. Acta Geotechnica, 2013, 8(4): 395–405
https://doi.org/10.1007/s11440-012-0200-9
2 K M Anwar Hossain. Stabilized soils incorporating combinations of rice husk ash and cement kiln dust. Journal of Materials in Civil Engineering, 2011, 23(9): 1320–1327
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000310
3 A Muthadhi, S Kothandaraman. Optimum production conditions for reactive rice husk ash. Materials and Structures, 2010, 43(9): 1303–1315
https://doi.org/10.1617/s11527-010-9581-0
4 Y Bagheri, F Ahmad, M A M Ismail. Strength and mechanical behavior of soil–cement–lime–rice husk ash (Soil–CLR) mixture. Materials and Structures, 2014, 47(1–2): 55–66
https://doi.org/10.1617/s11527-013-0044-2
5 M A Shahin, H R Maier, M B Jaksa. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering, 2004, 18(2): 105–114
https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
6 B S Narendra, P V Sivapullaiah, S Suresh, S N Omkar. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Computers and Geotechnics, 2006, 33(3): 196–208
https://doi.org/10.1016/j.compgeo.2006.03.006
7 E Kalkan, S Akbulut, A Tortum, A Celik. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology (Berlin), 2009, 58(7): 1429–1440
https://doi.org/10.1007/s00254-008-1645-x
8 S Suman, M Mahamaya, S K Das. Prediction of maximum dry density and unconfined compressive strength of cement stabilized soil using artificial intelligence techniques. International Journal of Geosynthetics and Ground Engineering, 2016, 2: 1–11
https://doi.org/10.1007/s40891-016-0051-9
9 S He, J Li. Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks. Applied Soft Computing, 2009, 9(3): 954–961
https://doi.org/10.1016/j.asoc.2008.11.013
10 O Gunaydin, A Gokoglu, M Fener. Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks. Advances in Engineering Software, 2010, 41(9): 1115–1123
https://doi.org/10.1016/j.advengsoft.2010.06.008
11 R Shrestha. Deep soil mixing and predictive neural network models for strength prediction. Dissertation for the Doctoral Degree. Cambridge: University of Cambridge, 2012
12 O Wang, A Al-Tabbaa. Preliminary model development for predicting strength and stiffness of cement-stabilized soils using artificial neural networks. In: ASCE International Workshop on Computing in Civil Engineering. Los Angeles, CA, 2013, 299–306
https://doi.org/10.1061/9780784413029.038
13 H I Park, Y T Kim. Prediction of strength of reinforced lightweight soil using an artificial neural network. Engineering Computations, 2011, 28(5): 600–615
https://doi.org/10.1108/02644401111141037
14 R Mozumder, A I Laskar. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Computers and Geotechnics, 2015, 69: 291–300
https://doi.org/10.1016/j.compgeo.2015.05.021
15 H Güllü, H I Fedakar. On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence. Geomechanics and Engineering, 2017, 12(3): 441–464
https://doi.org/10.12989/gae.2017.12.3.441
16 A Ghorbani, H Hasanzadehshooiili. Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models Application to the deep soil mixing. Soil and Foundation, 2018, 58(1): 34–49
https://doi.org/10.1016/j.sandf.2017.11.002
17 Y Erzin, N Ecemis. The use of neural networks for CPT-based liquefaction screening. Bulletin of Engineering Geology and the Environment, 2015, 74(1): 103–116
https://doi.org/10.1007/s10064-014-0606-8
18 R A Mozumder, A I Laskar, M Hussain. Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construction & Building Materials, 2017, 132: 412–424
https://doi.org/10.1016/j.conbuildmat.2016.12.012
19 J Wang, Y Xing, L Cheng, F Qin, T Ma. The prediction of mechanical properties of cement soil based on PSO-SVM. In: International Conference on Computational Intelligence and Software Engineering. Wuhan: IEEE, 2010, 10: 1–4
20 X Shi, Q Liu, X Lv. Application of SVM In prediction the strength of cement stabilized soil. Applied Mechanics and Materials, 2012, 160: 313–317
https://doi.org/10.4028/www.scientific.net/AMM.160.313
21 J Tinoco, A Gomes Correia, P Cortez. Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Computers and Geotechnics, 2014, 55: 132–140
https://doi.org/10.1016/j.compgeo.2013.08.010
22 N Ceryan. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. Journal of African Earth Sciences, 2014, 100: 634–644
https://doi.org/10.1016/j.jafrearsci.2014.08.006
23 H Zhao. Slope reliability analysis using a support vector machine. Computers and Geotechnics, 2008, 35(3): 459–467
https://doi.org/10.1016/j.compgeo.2007.08.002
24 A Kordjazi, F Pooya Nejad, M B Jaksa. Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Computers and Geotechnics, 2014, 55: 91–102
https://doi.org/10.1016/j.compgeo.2013.08.001
25 V K Singh, D Kumar, P S Kashyap, P K Singh, A Kumar, S K Singh. Modelling of soil permeability using different data driven algorithms based on physical properties of soil. Journal of Hydrology (Amsterdam), 2019, 580: 124223
26 X Xue, X Yang. Seismic liquefaction potential assessed by support vector machines approaches. Bulletin of Engineering Geology and the Environment, 2016, 75(1): 153–162
https://doi.org/10.1007/s10064-015-0741-x
27 N C Hoang, D T Bui. Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: A multi-dataset study. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 191–204
https://doi.org/10.1007/s10064-016-0924-0
28 A Rahbarzare, M Azadi. Improving prediction of soil liquefaction using hybrid optimization algorithms and a fuzzy support vector machine. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 4977–4987
https://doi.org/10.1007/s10064-018-01445-3
29 S S Haykin. Neural Networks: A Comprehensive Foundation. New York: Prentice Hall, ISBN 0132733501. OCLC 38908586. 1999
30 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial Neural Network Methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
31 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
32 C H Aladag, E Egrioglu, S Gunay, M A Basaran. Improving weighted information criterion by using optimization. Journal of Computational and Applied Mathematics, 2010, 233(10): 2683–2687
https://doi.org/10.1016/j.cam.2009.11.016
33 V N Vapnik, S E Golowich, A Smola. Support vector method for function approximation, regression estimation and signal processing. In: NIPS’96: Proceedings of the 9th International Conference on Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1996
34 V R Kohestani, M Hassanlourad. Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines. International Journal of Geomechanics, 2016, 16(1): 04015038
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000509
35 A J Smola, B Scholkopf. A Tutorial on Support Vector Regression. Report No. NC2-TR-1998-030, Neuro COLT2 Technical Report Series. 1998
36 C W Hsu, C C Chang, C J Lin. A Practical Guide to Support Vector Classification. Technical report. Taipei, China: Taiwan University, 2016
37 N Cristianini, J Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel Based Learning Methods. London: Cambridge University, 2000
38 A T Goh, S Goh. Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Computers and Geotechnics, 2007, 34(5): 410–421
https://doi.org/10.1016/j.compgeo.2007.06.001
39 P Samui. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 2008, 35(3): 419–427
https://doi.org/10.1016/j.compgeo.2007.06.014
40 A F Al-Anazi, I D Gates. Support vector regression to predict porosity and permeability: Effect of sample size. Computers & Geosciences, 2012, 39: 64–76
https://doi.org/10.1016/j.cageo.2011.06.011
41 K Q Tran, T Satomi, H Takahashi. Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test. Journal of Building Engineering 2019, 24: 1–10
https://doi.org/10.1016/j.jobe.2019.100748
[1] Nima PIRHADI, Xiaowei TANG, Qing YANG, Afshin ASADI, Hazem Samih MOHAMED. Predicting lateral displacement caused by seismic liquefaction and performing parametric sensitivity analysis: Considering cumulative absolute velocity and fine content[J]. Front. Struct. Civ. Eng., 2021, 15(2): 506-519.
[2] Teng WANG, Dajun YUAN, Dalong JIN, Xinggao LI. Experimental study on slurry-induced fracturing during shield tunneling[J]. Front. Struct. Civ. Eng., 2021, 15(2): 333-345.
[3] Mohammad Ali NAGHSH, Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Hamed TAGHAVIZADEH, Mehdi MORADI. An innovative model for predicting the displacement and rotation of column-tree moment connection under fire[J]. Front. Struct. Civ. Eng., 2021, 15(1): 194-212.
[4] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[5] Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND. Estimation of flexible pavement structural capacity using machine learning techniques[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1083-1096.
[6] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[7] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[8] Reza ASHEGHI, Seyed Abbas HOSSEINI. Prediction of bed load sediments using different artificial neural network models[J]. Front. Struct. Civ. Eng., 2020, 14(2): 374-386.
[9] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[10] Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong Wan HU. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1379-1392.
[11] Ali Reza GHANIZADEH, Morteza RAHROVAN. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline[J]. Front. Struct. Civ. Eng., 2019, 13(4): 787-799.
[12] Tanvi SINGH, Mahesh PAL, V. K. ARORA. Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree[J]. Front. Struct. Civ. Eng., 2019, 13(3): 674-685.
[13] Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine[J]. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
[14] Ravi Kant MITTAL, Sanket RAWAT, Piyush BANSAL. Multivariable regression model for Fox depth correction factor[J]. Front. Struct. Civ. Eng., 2019, 13(1): 103-109.
[15] T. Chandra Sekhara REDDY. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network[J]. Front. Struct. Civ. Eng., 2018, 12(4): 490-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed