Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (3) : 754-772    https://doi.org/10.1007/s11709-021-0711-2
RESEARCH ARTICLE
Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate concrete
Jingwei YING1,2, Yijie HUANG1,2(), Xu GAO1, Xibo QI1, Yuedong SUN1
1. Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, China
2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
 Download: PDF(9469 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

Keywords sea sand recycled aggregate concrete      recycled coarse aggregate replacement percentage      sea sand chloride ion content      long-term mechanical properties      stress–strain curve     
Corresponding Author(s): Yijie HUANG   
Just Accepted Date: 12 April 2021   Online First Date: 11 June 2021    Issue Date: 14 July 2021
 Cite this article:   
Jingwei YING,Yijie HUANG,Xu GAO, et al. Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate concrete[J]. Front. Struct. Civ. Eng., 2021, 15(3): 754-772.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0711-2
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I3/754
material bulk density (kg/m3) apparent density (kg/m3) water absorption clay content crushing index
NCA 1562 2580 0.9% 0.8% 7.6%
RCA 1416 2490 6.9% 8.6% 11.7%
Tab.1  Properties of coarse aggregate
material clay content apparent density (kg/m3) size (mm) shell content Cl- content
sea sand 0.82% 2545 kg·m−3 0.15–2.2 1.18% 0.050%/0.081%/0.184%
river sand 2.81% 2603 kg·m−3 0.15–2.25 0% 0%
Tab.2  Properties of fine aggregates
Fig.1  Illustration of sliced concrete: (a) SSRAC-AA; (b) SSRAC-BA; (c) SSRAC-CA.
specimen NCA (kg·m−3) RCA (kg·m−3) river sand (kg·m−3) sea sand (kg·m−3) sea sand Cl- content
(%)
dry density (kg·m−3)
SSRAC-AA 1181.6 0 693.6 0 0 2355
SSRAC-BA 590.8 590.8 693.6 0 0 2335
SSRAC-CA 0 1181.6 693.6 0 0 2323
SSRAC-AB 1181.6 0 0 693.6 0.050 2373
SSRAC-BB 590.8 590.8 0 693.6 0.050 2350
SSRAC-CB 0 1181.6 0 693.6 0.050 2320
SSRAC-AC 1181.6 0 0 693.6 0.081 2395
SSRAC-BC 590.8 590.8 0 693.6 0.081 2352
SSRAC-CC 0 1181.6 0 693.6 0.081 2316
SSRAC-AD 1181.6 0 0 693.6 0.184 2405
SSRAC-BD 590.8 590.8 0 693.6 0.184 2394
SSRAC-CD 0 1181.6 0 693.6 0.184 2365
Tab.3  Details of specimen
Fig.2  Details of loading system: (a) prismatic and cubic concrete; (b) sliced concrete.
Fig.3  Failure surface of SSRAC: (a) SSRAC-BA; (b) SSRAC-BD.
specimen E ( × 104 MPa) υ
day 7 day 14 day 28 day 100 1 year 2 years day 28 2 years
SSRAC-AA 1.992 2.001 2.147 2.657 2.745 2.808 0.246 0.241
SSRAC-BA 1.810 1.968 2.133 2.302 2.338 2.431 0.248 0.214
SSRAC-CA 1.764 1.836 2.001 2.115 2.160 2.209 0.255 0.192
SSRAC-AB 2.014 2.331 2.359 2.687 2.769 2.841 0.237 0.221
SSRAC-BB 1.967 1.961 2.212 2.341 2.387 2.462 0.231 0.209
SSRAC-CB 1.824 1.948 2.131 2.158 2.192 2.223 0.225 0.188
SSRAC-AC 2.047 2.369 2.450 2.619 2.720 2.869 0.210 0.213
SSRAC-BC 1.973 2.035 2.458 2.520 2.583 2.607 0.228 0.199
SSRAC-CC 1.872 1.962 2.214 2.225 2.238 2.261 0.203 0.186
SSRAC-AD 2.317 2.400 2.463 2.781 2.854 2.903 0.206 0.210
SSRAC-BD 2.034 2.178 2.289 2.367 2.404 2.452 0.198 0.193
SSRAC-CD 1.865 2.043 2.213 2.230 2.251 2.279 0.193 0.183
Tab.4  Elastic modulus and Poisson’s ratio of SSRAC at different ages
specimen day 7 day 14 day 28 day 100 1 year 2 years
SSRAC-AA 16.34 18.35 28.2 29.12 30.01 30.23
SSRAC-BA 15.01 20.11 27.9 28.14 29.03 29.75
SSRAC-CA 15.89 21.42 26.46 26.72 26.93 27.02
SSRAC-AB 17.16 23.98 29.65 30.78 31.55 30.71
SSRAC-BB 13.91 21.3 28.01 28.22 28.56 28.9
SSRAC-CB 13.93 17.78 26.36 24.51 25.92 27.31
SSRAC-AC 16.36 20.29 32.61 33.58 34.18 34.78
SSRAC-BC 16.56 20.25 28.11 27.43 29.21 30.42
SSRAC-CC 16.26 17.67 25.38 25.42 26.42 27.52
SSRAC-AD 17.06 21.66 33.84 34.66 35.22 35.78
SSRAC-BD 16.96 21.85 29.93 30.35 30.85 31.02
SSRAC-CD 16.47 21.09 29.23 29.69 30.17 30.59
Tab.5  Cubic compressive strength of SSRAC at different ages (MPa)
specimen day 7 day 14 day 28 day 100 1 year 2 years
SSRAC-AA 11.41 14.44 18.59 25.95 26.88 27.15
SSRAC-BA 10.79 13.66 17.41 22.05 23.49 24.92
SSRAC-CA 9.71 13.08 15.90 21.89 22.65 23.13
SSRAC-AB 11.84 14.99 19.98 26.98 27.73 28.29
SSRAC-BB 11.06 15.63 19.87 26.74 26.43 26.59
SSRAC-CB 10.61 13.5 19.63 26.05 25.86 26.01
SSRAC-AC 12.09 16.56 21.40 26.65 28.3 29.67
SSRAC-BC 11.89 15.03 18.84 21.76 23.41 25.36
SSRAC-CC 10.82 13.95 17.72 20.07 22.83 24.44
SSRAC-AD 12.28 16.97 22.38 29.01 30.11 30.52
SSRAC-BD 12.02 15.53 19.86 25.03 25.36 25.51
SSRAC-CD 11.11 14.26 19.60 23.91 24.51 24.93
Tab.6  Prismatic compressive strength of SSRAC at different ages (MPa)
Fig.4  Development of axial stress–strain curve at different ages: (a) RCA replacement percentage; (b) sea sand Cl- content.
Fig.5  Sliced specimen: (a) SSRAC-AA; (b) SSRAC-BA; (c) SSRAC-CA; (d) SSRAC-CD.
Fig.6  SSRAC axial displacement at 0.3σmax (units: mm): (a) SSRAC-AA; (b) SSRAC-BA; (c) SSRAC-CA; (d) SSRAC-CD.
Fig.7  SSRAC axial displacement at σmax (units: mm). (a) SSRAC-AA; (b) SSRAC-BA; (c) SSRAC-CA; (d) SSRAC-CD.
Fig.8  SSRAC axial strain at 0.3σmax (units: ε): (a) SSRAC-AA; (b) SSRAC-CA; (c) SSRAC-CD.
Fig.9  SSRAC axial strain at σmax (units: ε): (a) SSRAC-AA; (b) SSRAC-CA; (c) SSRAC-CD.
Fig.10  SSRAC transverse strain at 0.3σmax (units: ε): (a) SSRAC-AA; (b) SSRAC-CA; (c) SSRAC-CD.
Fig.11  SSRAC transverse strain at σmax (units: ε). (a) SSRAC-AA; (b) SSRAC-CA; (c) SSRAC-CD.
Fig.12  SSRAC-AA crack propagation at different stages. (a) Transverse strain at 0.5σmax shown in specimen (b); (c) transverse strain at 0.9σmax shown in specimen (d); (e) transverse strain at 0.9σmax (post peak point) shown in specimen (f).
Fig.13  SSRAC-CA crack propagation at different stages. (a) Transverse strain at 0.5σmax show in specimen (b); (c) transverse strain at 0.9σmax shown in specimen (d); (e) transverse strain at 0.9σmax (post peak point) shown in specimen (f).
Fig.14  SSRAC-CD crack propagation at different stages. (a) Transverse strain at 0.5σmax shown in specimen (b); (c) transverse strain at 0.9σmax shown in specimen (d); (e) transverse strain at 0.9σmax (post peak point) shown in specimen (f).
Fig.15  Calculated stress–strain curves: (a) RCA replacement percentage; (b) sea sand Cl- content.
1 Y J Huang, X J He, Q Wang, Y D Sun. Mechanical properties of sea sand recycled aggregate concrete under axial compression. Construction & Building Materials, 2018, 175: 55–63
https://doi.org/10.1016/j.conbuildmat.2018.04.136
2 J Limeira, L Agullo, M Etxeberria. Dredged marine sand as a new source for construction materials. Materiales de Construcción, 2012, 62(305): 7–24
3 J Z Xiao, C B Qiang, A Nanni, K J Zhang. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Construction & Building Materials, 2017, 155: 1101–1111
https://doi.org/10.1016/j.conbuildmat.2017.08.130
4 W G Li, Z Y Luo, Z H Sun, Y Hu, W H Duan. Numerical modelling of plastic-damage response and crack propagation in RAC under uniaxial loading. Magazine of Concrete Research, 2018, 70(9): 459–472
https://doi.org/10.1680/jmacr.17.00042
5 J Z Xiao, P Zhang, Q T Zhang, J Shen, Y Li, Y Zhou. Basic Mechanical properties of seawater sea-sand recycled concrete. Journal of Architecture and Civil Engineering, 2018, 35(2): 16–22 (in Chinese)
6 Q T Zhang, J Z Xiao, Q X Liao, Z H Duan. Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars. Engineering Structures, 2019, 189: 458–470
https://doi.org/10.1016/j.engstruct.2019.03.101
7 J Limeira, M Etxeberria, L Agullo, D Molina. Mechanical and durability properties of concrete made with dredged marine sand. Construction & Building Materials, 2011, 25(11): 4165–4174
https://doi.org/10.1016/j.conbuildmat.2011.04.053
8 B N N Kumar, P K Kumar, E R Babu, M Gopal, D S Reddy, K Sreekanth, U Yellppa. An experimental study on sea sand by partial replacement of sea sand in concrete. International Journal of Scientific Research in Science and Technology, 2016, 2(2): 181–184
9 M Bravo, J de Brito, J Pontes, L Evangelista. Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 2015, 99: 59–74
https://doi.org/10.1016/j.jclepro.2015.03.012
10 C S Poon, S C Kou, H W Wan, M Etxeberria. Properties of concrete blocks prepared with low grade recycled aggregates. Waste Management (New York, N.Y.), 2009, 29(8): 2369–2377
https://doi.org/10.1016/j.wasman.2009.02.018
11 M Etxeberria, J M Fernandez, J Limeira. Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: Case study. Construction & Building Materials, 2016, 113: 586–595
https://doi.org/10.1016/j.conbuildmat.2016.03.097
12 Zh Shi, Zh Shui, Q Li, H N Geng. Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction & Building Materials, 2015, 74(15): 57–64
https://doi.org/10.1016/j.conbuildmat.2014.10.023
13 Q H Li, N Geng, Y Huang, Z Shui. Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study. Construction & Building Materials, 2015, 101: 184–192
https://doi.org/10.1016/j.conbuildmat.2015.10.076
14 J L Liu, Y Mei, R Xia. A new wetting mechanism based upon triple contact line pinning. Langmuir, 2011, 27(1): 196–200
https://doi.org/10.1021/la103652s
15 S Cheng, Z Shui, T Sun, R Yu, G Z Zhang, S Ding. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Applied Clay Science, 2017, 141: 111–117
https://doi.org/10.1016/j.clay.2017.02.026
16 Y J Huang, J D Wu, Q Wang. Behaviour of sea sand recycled concrete filled steel tube under axial compression. PICE-Structures and Buildings, 2020, 173(4): 302–312
https://doi.org/10.1680/jstbu.18.00125
17 Y J Huang, X J He, H S Sun, Y D Sun, Q Wang. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete. Construction & Building Materials, 2018, 192: 330–347
https://doi.org/10.1016/j.conbuildmat.2018.10.111
18 B Da, H Yu, H Ma, Y Tan, R Mi, X Dou. Experimental investigation of whole stress-strain curves of coral concrete. Construction & Building Materials, 2016, 122: 81–89
https://doi.org/10.1016/j.conbuildmat.2016.06.064
19 Y J Huang, X W Li, Y Lu, H H Wang, Q Wang, H S Sun, D Y Li. Effect of mix component on the mechanical properties of coral concrete under axial compression. Construction & Building Materials, 2019, 223: 736–754
https://doi.org/10.1016/j.conbuildmat.2019.07.015
20 P C Zuo, J L Liu, S P Li. The load-bearing ability of a particle raft under the transverse compression of a slender rod. Soft Matter, 2017, 13(12): 2315–2321
https://doi.org/10.1039/C6SM02752K
21 J Z Xiao, J B Li, Ch Zhang. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 2005, 35(6): 1187–1194
https://doi.org/10.1016/j.cemconres.2004.09.020
22 H Guo, C J Shi, X M Guan, J P Zhu, Y H Ding, T C Ling, H B Zhang, Y L Wang. Durability of recycled aggregate concrete — A review. Cement and Concrete Composites, 2018, 89: 251–259
https://doi.org/10.1016/j.cemconcomp.2018.03.008
23 J J Xu, X Y Zhao, Y Yu, T Y Xie, G S Yang, J Y Xue. Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory multiple nonlinear regression and artificial neural networks. Construction & Building Materials, 2019, 211: 479–491
https://doi.org/10.1016/j.conbuildmat.2019.03.234
24 M Etxeberria, E Vazquez, A Marí, M Barra. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 2007, 37(5): 735–742
https://doi.org/10.1016/j.cemconres.2007.02.002
25 Y J Huang, X J He, Q Wang, J Z Xiao. Deformation field and crack analyses of concrete using digital image correlation method. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1183–1199
https://doi.org/10.1007/s11709-019-0545-3
26 S Choi, S P Shah. Measurement of deformations on concrete subjected to compression using image correlation. Experimental Mechanics, 1997, 37(3): 307–313
https://doi.org/10.1007/BF02317423
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed