Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (3) : 696-711    https://doi.org/10.1007/s11709-021-0727-7
RESEARCH ARTICLE
Data-driven approach to solve vertical drain under time-dependent loading
Trong NGHIA-NGUYEN1,2, Mamoru KIKUMOTO1, Samir KHATIR3, Salisa CHAIYAPUT4, H. NGUYEN-XUAN5, Thanh CUONG-LE2()
1. Department of Civil Engineering, Yokohama National University, Yokohama 240-8501, Japan
2. Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City 70000, Vietnam
3. Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Faculty of Engineering and Architecture, Ghent University, Ghent 9000, Belgium
4. Department of Civil Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
5. CIRTECH Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 708300, Vietnam
 Download: PDF(2651 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, the vertical drain consolidation problem is solved by numerous analytical solutions, such as time-dependent solutions and linear or parabolic radial drainage in the smear zone, and no artificial intelligence (AI) approach has been applied. Thus, in this study, a new hybrid model based on deep neural networks (DNNs), particle swarm optimization (PSO), and genetic algorithms (GAs) is proposed to solve this problem. The DNN can effectively simulate any sophisticated equation, and the PSO and GA can optimize the selected DNN and improve the performance of the prediction model. In the present study, analytical solutions to vertical drains in the literature are incorporated into the DNN–PSO and DNN–GA prediction models with three different radial drainage patterns in the smear zone under time-dependent loading. The verification performed with analytical solutions and measurements from three full-scale embankment tests revealed promising applications of the proposed approach.

Keywords vertical drain      artificial neural network      time-dependent loading      deep learning network      genetic algorithm      particle swarm optimization     
Corresponding Author(s): Thanh CUONG-LE   
Online First Date: 09 June 2021    Issue Date: 14 July 2021
 Cite this article:   
Trong NGHIA-NGUYEN,Mamoru KIKUMOTO,Samir KHATIR, et al. Data-driven approach to solve vertical drain under time-dependent loading[J]. Front. Struct. Civ. Eng., 2021, 15(3): 696-711.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0727-7
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I3/696
Fig.1  Cylinder unit cell model and lateral drainage patterns.
Fig.2  Single-ramp loading and degree of consolidation (DOC).
Fig.3  Approximate curve of DOC versus the number of divided nodes.
Fig.4  Topology of the DNN.
parameters unit limits
n [15–40]
s [2,3]
Rs [3–10]
H m [5–30]
Cv m2/year [0.5–2.5]
Ch m2/year [0.5–10]
Rhw [30000–100000]
Th1 [0–5]
Tab.1  Range of data set
parameters n s Rs H Cv Ch Rhw Th1
average 27.83 2.50 6.45 17.53 1.50 3.79 65057 2.55
max 39.99 3.00 9.99 29.98 2.50 9.88 99954 5.00
min 15.03 2.00 3.01 5.00 0.50 0.50 30091 0.01
range 24.96 1.00 6.98 24.98 2.00 9.38 69863 4.99
median 28.33 2.51 6.44 17.56 1.50 3.34 64552 2.58
Tab.2  Statistical values for pattern I data set
parameters n s Rs H Cv Ch Rhw Th1
average 26.96 2.49 6.47 17.49 1.52 3.85 64380 2.47
max 39.92 3.00 9.99 29.99 2.50 9.94 99978 5.00
min 15.02 2.00 3.00 5.02 0.50 0.51 30004 0.00
range 24.91 1.00 6.99 24.97 2.00 9.44 69974 5.00
median 26.55 2.49 6.45 17.45 1.55 3.40 64400 2.50
Tab.3  Statistical values for pattern II data set
parameters n s Rs H Cv Ch Rhw Th1
average 27.97 2.50 6.45 17.44 1.51 3.75 65081 2.51
max 39.97 3.00 10.00 29.99 2.50 9.99 99838 5.00
min 15.05 2.00 3.01 5.02 0.50 0.52 30005 0.00
range 24.92 1.00 6.99 24.97 2.00 9.47 69833 4.99
median 28.13 2.51 6.38 17.42 1.53 3.30 65647 2.46
Tab.4  Statistical values for pattern III data set
Fig.5  Feature distribution in pattern I data set. (a) Distribution of value n;(b) distribution of value R s; (c) distribution of value H; (d) distribution of value Th1.
Fig.6  Feature distribution in pattern II data set. (a) Distribution of value n;(b) distribution of value R s; (c) distribution of value H; (d) distribution of value Th1.
Fig.7  Feature distribution in pattern III data set. (a) Distribution of value n;(b) distribution of value Rs; (c) distribution of value H; (d) distribution of value Th1.
Fig.8  Concept of real and image positions.
Case w c1 c2 MSE optimum neurons
1 [1-0.8] 1 1.25 1.77E-05 11
2 [1-0.8] 1 1.5 1.74E-05 10
3 [1-0.8] 1 2 1.72E-05 11
4 [1-0.8] 1 3 1.99E-05 9
5 [1-0.35] 1 2 1.80E-05 14
6 [1-0.86] 1 2 1.81E-05 13
7 [1-0.47] 1 2 1.76E-05 11
8 [1-0.3] 1.467 1.467 1.79E-05 9
9 [1-0.35] 1.5 1 1.88E-05 10
10 [1-0.35] 1 1 1.83E-05 10
Tab.5  Training with one hidden layer network to select parameters for PSO
Fig.9  Convergence graphs of training process. (a) DNN-PSO pattern I; (b) DNN-GA pattern I; (c) DNN-PSO pattern II; (d) DNN-GA pattern II; (e) DNN-PSO pattern III; (f) DNN-GA pattern III.
hidden layers DNN–PSO DNN–GA
optimum number of neurons training
MSE
validation MSE optimum number of neurons training MSE validation MSE
1 (11) 1.7E-05 6.5E-05 (11) 1.8E-05 7.1E-05
2 (9,10) 1.1E-05 2.9E-05 (7,11) 9.0E-06 4.0E-05
3 (5,6,14) 7.5E-06 2.6E-05 (5,5,15) 6.8E-06 1.6E-05
4 (6,5,6,13) 1.2E-05 3.6E-05 (5,4,7,15) 5.5E-06 1.4E-05
5 (5,5,6,15,9) 7.7E-06 3.8E-05 (5,3,8,16,16) 5.5E-06 2.1E-05
6 (4,13,15,14,18,5) 3.3E-05 8.1E-05 (5,3,10,4,12,7) 1.4E-05 2.3E-05
Tab.6  Analysis results from pattern I data set
hidden layers DNN–PSO DNN–GA
optimum number of neurons training MSE validation MSE optimum number of neurons training MSE validation MSE
1 (11) 8.5E-06 2.9E-05 (11) 7.6E-06 3.5E-05
2 (5,11) 3.9E-06 2.7E-05 (5,17) 2.6E-06 1.6E-05
3 (5,14,17) 4.1E-06 2.3E-05 (4,10,13) 3.8E-06 2.9E-05
4 (6,5,12,11) 4.3E-06 3.7E-05 (4,4,8,16) 4.9E-06 1.1E-05
5 (3,4,10,7,8) 5.6E-06 2.2E-05 (4,3,5,16,9) 4.7E-06 2.7E-05
6 (4,2,9,16,8,13) 6.6E-06 5.3E-05 (3,6,9,8,16,12) 5.6E-06 3.9E-05
Tab.7  Analysis results from pattern II data set
hidden layers DNN–PSO DNN–GA
optimum number of neurons training MSE validation MSE optimum number of neurons training MSE validation MSE
1 (11) 7.7E-06 5.3E-05 (11) 5.0E-06 1.5E-05
2 (4,16) 2.8E-06 1.5E-05 (4,11) 3.2E-06 1.7E-05
3 (4,8,17) 3.3E-06 1.8E-05 (4,7,12) 3.0E-06 8.3E-06
4 (5,4,9,13) 3.1E-06 1.0E-05 (4,4,13,12) 3.2E-06 2.3E-05
5 (4,4,8,15,7) 3.7E-06 3.3E-05 (4,2,2,10,14) 2.5E-06 4.3E-05
6 (4,3,5,10,12,12) 3.4E-06 1.6E-05 (4,2,9,15,15,20) 4.5E-06 2.2E-05
Tab.8  Analysis results from pattern III data set
Fig.10  DOCs by the DNN–GA and by Tang and Onitsuka [24] in pattern I.
Fig.11  DOCs by the DNN–GA and by Xie et al. [26] in pattern II.
Fig.12  DOCs by the DNN–PSO and by Xie et al. [26] in pattern III.
Fig.13  Simplified loading sequences.
embankment TS1 TS2 TS3
S (m) 1.5 1.2 1
De (m) 1.695 1.356 1.13
re (m) 0.848 0.678 0.565
n 32.60 26.08 21.73
s 3.2 3.2 3.2
Rs 8 8 8
H (m) 12 12 12
ch (m2/year) 5 5 5
t1 220 220 220
T1t1ch/(2re)2 1.04896 1.63901 2.360
kd/kh 80000 50000 35000
Tab.9  Input parameters of the DNN in pattern I
Fig.14  Comparison of the DOCs by the DNN in pattern I with field measurements.
embankment TS1 TS2 TS3
S (m) 1.5 1.2 1
De (m) 1.695 1.356 1.13
re (m) 0.848 0.678 0.565
n 32.60 26.08 21.73
s 3.2 3.2 3.2
Rs 8 8 8
H (m) 12 12 12
ch (m2/year) 5 5 5
t1 220 220 220
T1t1ch/(2re)2 1.049 1.639 2.360
kd/kh 21000 18000 16000
Tab.10  Input parameters of the DNN in pattern II
embankment TS1 TS2 TS3
S (m) 1.5 1.2 1
De (m) 1.695 1.356 1.13
re (m) 0.848 0.678 0.565
n 32.60 26.08 21.73
s 3.2 3.2 3.2
Rs 8 8 8
H (m) 12 12 12
ch (m2/year) 5 5 5
t1 220 220 220
T1t1ch/(2re)2 1.049 1.639 2.360
kd/kh 16000 14000 13000
Tab.11  Input parameters of the DNN in pattern III
Fig.15  Comparison of the DOCs by the DNN in pattern II with field measurements.
Fig.16  Comparison of the DOCs by the DNN in pattern III with field measurements.
ch: coefficient of consolidation in the horizontal direction
cv: coefficient of consolidation in the vertical direction
Fc: parameter to reflect the effect of the decay pattern
H: soil thickness
kd:coefficient of permeability of the drain
kh:horizontal coefficient of permeability
ks:horizontal coefficient of permeability of the smeared zone
kv:vertical coefficient of permeability
mv: coefficient of volume compressibility
qw: discharge capacity
rd: drain radius
re: equivalent radius of the influence zone
rs: smeared zone radius
u: excess pore water pressure
u: average excess pore water pressure
σ( t): the surcharge load
εv: vertical strain
γw: unit weight of water
  
1 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
2 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
3 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112790
https://doi.org/10.1016/j.cma.2019.112790
4 H Guo, X Zhuang, X Meng, T. Rabczuk Integrated intelligent Jaya Runge-Kutta method for solving Falkner-Skan equations for various wedge angles. 2020, arXiv:2010.05682
5 K M Hamdia, X Zhuang, T Rabczuk. An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Computing & Applications, 2021, 33(6): 1923–1933
https://doi.org/10.1007/s00521-020-05035-x
6 X Zhuang, H Guo, N Alajlan, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates. European Journal of Mechanics. A, Solids, 2020, 2010: 05698
7 I Ahmad, M Hesham El Naggar, A N Khan. Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dynamics and Earthquake Engineering, 2007, 27(9): 892–905
https://doi.org/10.1016/j.soildyn.2006.12.009
8 E Momeni, R Nazir, D Jahed Armaghani, H Maizir. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 2014, 57: 122–131
https://doi.org/10.1016/j.measurement.2014.08.007
9 P U Kurup, N K Dudani. Neural networks for profiling stress history of clays from PCPT data. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 569–579
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(569)
10 S J Lee, S R Lee, Y S Kim. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Computers and Geotechnics, 2003, 30(6): 489–503
https://doi.org/10.1016/S0266-352X(03)00058-2
11 B T ham, M D Nguyen, D V Dao, I Prakash, H B Ly, T T Le, L S Ho, K T Nguyen, T Q Ngo, V Hoang, L H Son, H T T Ngo, H T Tran, N M Do, H Van Le, H L Ho, D Tien Bui. Development of artificial intelligence models for the prediction of compression coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 2019, 679: 172–184
https://doi.org/10.1016/j.scitotenv.2019.05.061
12 A Beucher, A B Møller, M H Greve. Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma, 2019, 352: 351–359
https://doi.org/10.1016/j.geoderma.2017.11.004
13 A Abbaszadeh Shahri, J Spross, F Johansson, S Larsson. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena, 2019, 183: 104225
https://doi.org/10.1016/j.catena.2019.104225
14 W Chen, H R Pourghasemi, A Kornejady, N Zhang. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 2017, 305: 314–327
https://doi.org/10.1016/j.geoderma.2017.06.020
15 G R Khanlari, M Heidari, A A Momeni, Y Abdilor. Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, 2012, 131–132: 11–18
https://doi.org/10.1016/j.enggeo.2011.12.006
16 B Tiryaki. Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Engineering Geology, 2008, 99(1–2): 51–60
https://doi.org/10.1016/j.enggeo.2008.02.003
17 D T Bergado, A S Balasubramaniam, R J Fannin, R D Holtz. Prefabricated vertical drains (PVDs) in soft Bangkok clay: A case study of the new Bangkok International Airport project. Canadian Geotechnical Journal, 2002, 39(2): 304–315
https://doi.org/10.1139/t01-100
18 D T Bergado, S Chaiyaput, S Artidteang, T N Nguyen. Microstructures within and outside the smear zones for soft clay improvement using PVD only, Vacuum-PVD, Thermo-PVD and Thermo-Vacuum-PVD. Geotextiles and Geomembranes, 2020, 48(6): 828–843
https://doi.org/10.1016/j.geotexmem.2020.07.003
19 N T Nghia, L G Lam, S K Shukla. A new approach to solution for partially penetrated prefabricated vertical drains. International Journal of Geosynthetics and Ground Engineering, 2018, 4(2): 11–17
https://doi.org/10.1007/s40891-018-0128-8
20 T Nghia-Nguyen, S K Shukla, D D C Nguyen, L G Lam, P H-Dang, P C Nguyen. A new discrete method for solution to consolidation problem of ground with vertical drains subjected to surcharge and vacuum loadings. Engineering Computations, 2019, 37(4): 1213–1236
https://doi.org/10.1108/EC-01-2019-0035
21 T N Nguyen, D T Bergado, M Kikumoto, H P Dang, S Chaiyaput, P C Nguyen. A simple solution for prefabricated vertical drain with surcharge preloading combined with vacuum consolidation. Geotextiles and Geomembranes, 2021, 49(1): 304–322
https://doi.org/10.1016/j.geotexmem.2020.10.004
22 R Shome, W N Tang, C Song, C Mitash, H Kourtev, J Yu, A Boularias, K E Bekris. Towards robust product packing with a minimalistic end-effector. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, 9007–9013
23 M M Lu, K H Xie, S Y Wang. Consolidation of vertical drain with depth-varying stress induced by multi-stage loading. Computers and Geotechnics, 2011, 38(8): 1096–1011
https://doi.org/10.1016/j.compgeo.2011.06.007
24 X W Tang, K Onitsuka. Consolidation by vertical drains under time-dependent loading. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(9): 739–751
https://doi.org/10.1002/1096-9853(20000810)24:9<739::AID-NAG94>3.0.CO;2-B
25 C Rujikiatkamjorn, B Indraratna. Analytical solution for radial consolidation considering soil structure characteristics. Canadian Geotechnical Journal, 2015, 52(7): 947–960
https://doi.org/10.1139/cgj-2014-0277
26 K H Xie, M M Lu, G B Liu. Equal strain consolidation for stone columns reinforced foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(15): 1721–1735
https://doi.org/10.1002/nag.790
27 N Dey, S Borra, A S Ashour F and Shi. Machine Learning in Bio-Signal Analysis and Diagnostic Imaging. Academic Press, 2018, 159–182
https://doi.org/10.1016/C2017-0-02827-6
28 J Kennedy, R Eberhart. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. IEEE, 1995, 4: 1942–1948
29 D E Golberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, 1989
30 C Van Der Malsburg. Frank Rosenblatt: Principles of neurodynamics: Perceptrons and the Theory of Brain Mechanisms. In: Palm G, Aertsen A, eds. Brain Theory. Berlin: Springer, 1986, 245–248
31 M R Moghaddasi, M Noorian-Bidgoli. ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling. Tunnelling and Underground Space Technology, 2018, 79: 197–209
https://doi.org/10.1016/j.tust.2018.04.016
32 M T Hagan, M B Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6): 989–993
https://doi.org/10.1109/72.329697
33 M Y Rafiq, G Bugmann, D J Easterbrook. Neural network design for engineering applications. Computers & Structures, 2001, 79(17): 1541–1552
https://doi.org/10.1016/S0045-7949(01)00039-6
34 L. Early stopping—But when, neural networks: Tricks of the trade. In: Prechelt G Montavon, G B Orr, K R Müller, eds. Neural Networks: Tricks of the Trade. Springer, 1998, 55–69
35 S C Huang, Y F Huang. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions on Neural Networks, 1991, 2(1): 47–55
https://doi.org/10.1109/72.80290
36 I Kanellopoulos, G G Wilkinson. Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 1997, 18(4): 711–725
https://doi.org/10.1080/014311697218719
37 D G Lin, K T Chang. Three-dimensional numerical modelling of soft ground improved by prefabricated vertical drains. Geosynthetics International, 2009, 16(5): 339–353
https://doi.org/10.1680/gein.2009.16.5.339
38 L G Lam, D T Bergado, T Hino. PVD improvement of soft Bangkok clay with and without vacuum preloading using analytical and numerical analyses. Geotextiles and Geomembranes, 2015, 43(6): 547–557
https://doi.org/10.1016/j.geotexmem.2015.07.013
39 D T Bergado, R Manivannan, A S Balasubramaniam. Proposed criteria for discharge capacity of prefabricated vertical drains. Geotextiles and Geomembranes, 1996, 14(9): 481–505
https://doi.org/10.1016/S0266-1144(96)00028-3
40 Y B Deng, G B Liu, M M Lu, K H Xie. Consolidation behavior of soft deposits considering the variation of prefabricated vertical drain discharge capacity. Computers and Geotechnics, 2014, 62: 310–316
https://doi.org/10.1016/j.compgeo.2014.08.006
[1] Nima PIRHADI, Xiaowei TANG, Qing YANG, Afshin ASADI, Hazem Samih MOHAMED. Predicting lateral displacement caused by seismic liquefaction and performing parametric sensitivity analysis: Considering cumulative absolute velocity and fine content[J]. Front. Struct. Civ. Eng., 2021, 15(2): 506-519.
[2] Alireza TABARSA, Nima LATIFI, Abdolreza OSOULI, Younes BAGHERI. Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines[J]. Front. Struct. Civ. Eng., 2021, 15(2): 520-536.
[3] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[4] Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
[5] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[6] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[7] Reza ASHEGHI, Seyed Abbas HOSSEINI. Prediction of bed load sediments using different artificial neural network models[J]. Front. Struct. Civ. Eng., 2020, 14(2): 374-386.
[8] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[9] Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong Wan HU. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1379-1392.
[10] Tugrul TALASLIOGLU. Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology[J]. Front. Struct. Civ. Eng., 2019, 13(4): 863-889.
[11] M. SALAR, M. R. GHASEMI, B. DIZANGIAN. Practical optimization of deployable and scissor-like structures using a fast GA method[J]. Front. Struct. Civ. Eng., 2019, 13(3): 557-568.
[12] Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine[J]. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
[13] T. Chandra Sekhara REDDY. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network[J]. Front. Struct. Civ. Eng., 2018, 12(4): 490-503.
[14] P. ZAKIAN. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network[J]. Front. Struct. Civ. Eng., 2017, 11(4): 470-479.
[15] Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete[J]. Front. Struct. Civ. Eng., 2017, 11(1): 90-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed