Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (5) : 1144-1159    https://doi.org/10.1007/s11709-021-0762-4
RESEARCH ARTICLE
Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column
Hongyuan TANG1(), Ruizhong LIU1, Xin ZHAO1, Rui GUO1, Yigang JIA2
1. Institute of Structural Engineering, Xihua University, Chengdu 610039, China
2. Institute of Design and Research, Nanchang University, Nanchang 330029, China
 Download: PDF(11927 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mechanical properties of CFRP-confined rectangular concrete-filled stainless steel tube (CFSST) stub columns under axial compression were experimentally studied. A total of 28 specimens (7 groups) were fabricated for the axial compression test to study the influences of length-to-width ratio, CFRP constraint coefficient, and the thickness of stainless steel tube on the axial compression behavior. The specimen failure modes, the stress development of stainless steel tube and CFRP wrap, and the load–strain ratio curves in the loading process were obtained. Meanwhile, the relationship between axial and transverse deformations of each specimen was analyzed through the typical relative load−strain ratio curves. A bearing capacity prediction method was proposed based on the twin-shear strength theory, combining the limit equilibrium state of the CFRP-confined CFSST stub column under axial compression. The prediction method was calibrated by the test data in this study and other literature. The results show that the prediction method is of high accuracy.

Keywords CFRP      rectangular CFSST stub column      bearing capacity      limit equilibrium state      twin-shear strength theory     
Corresponding Author(s): Hongyuan TANG   
Just Accepted Date: 30 August 2021   Online First Date: 30 September 2021    Issue Date: 29 November 2021
 Cite this article:   
Hongyuan TANG,Ruizhong LIU,Xin ZHAO, et al. Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column[J]. Front. Struct. Civ. Eng., 2021, 15(5): 1144-1159.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0762-4
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I5/1144
Fig.1  Cross section of specimen.
specimen section size (mm) H/ B L (mm) t s (mm) n f t f r (mm) ξ s ξ f r N u (kN)
RA0 120 × 60 2.0 360 4 0 0.00 4.31 0.000 1261
RA1 120 × 60 2.0 360 4 1 0.17 4.31 0.667 1391
RA2 120 × 60 2.0 360 4 2 0.34 4.31 1.334 1412
RA3 120 × 60 2.0 360 4 3 0.51 4.31 2.001 1478
RB0 120 × 60 2.0 360 5 0 0.00 6.09 0.000 1632
RB1 120 × 60 2.0 360 5 1 0.17 6.09 0.706 1728
RB2 120 × 60 2.0 360 5 2 0.34 6.09 1.412 1816
RB3 120 × 60 2.0 360 5 3 0.51 6.09 2.118 1899
RC0 120 × 80 1.5 360 4 0 0.00 3.33 0.000 1362
RC1 120 × 80 1.5 360 4 1 0.17 3.33 0.482 1453
RC2 120 × 80 1.5 360 4 2 0.34 3.33 0.964 1612
RC3 120 × 80 1.5 360 4 3 0.51 3.33 1.446 1786
RD0 120 × 80 1.5 360 5 0 0.00 4.67 0.000 1732
RD1 120 × 80 1.5 360 5 1 0.17 4.67 0.505 1821
RD2 120 × 80 1.5 360 5 2 0.34 4.67 1.010 1921
RD3 120 × 80 1.5 360 5 3 0.51 4.67 1.515 2008
SA0 120 × 120 1.0 360 4 0 0.00 2.76 0.000 1815
SA1 120 × 120 1.0 360 4 1 0.17 2.76 0.740 1946
SA2 120 × 120 1.0 360 4 2 0.34 2.76 1.480 2054
SA3 120 × 120 1.0 360 4 3 0.51 2.76 2.220 2127
SB0 120 × 120 1.0 360 5 0 0.00 3.73 0.000 2275
SB1 120 × 120 1.0 360 5 1 0.17 3.73 0.770 2388
SB2 120 × 120 1.0 360 5 2 0.34 3.73 1.540 2488
SB3 120 × 120 1.0 360 5 3 0.51 3.73 2.300 2615
SC0 120 × 120 1.0 360 6 0 0.00 4.71 0.000 2854
SC1 120 × 120 1.0 360 6 1 0.17 4.71 0.800 2952
SC2 120 × 120 1.0 360 6 2 0.34 4.71 1.590 3032
SC3 120 × 120 1.0 360 6 3 0.51 4.71 2.390 3279
Tab.1  Parameters of specimens
section size (mm) σ 0.2 (MPa) E 0 (GPa) n
120 × 60 × 4 538 195 5
120 × 60 × 5 581 200 4
120 × 80 × 4 516 196 5
120 × 80 × 5 558 200 5
120 × 120 × 4 549 203 5
120 × 120 × 5 578 203 5
120 × 120 × 6 598 203 5
Tab.2  Material properties of stainless steel
material E fr (GPa) υ f f r (MPa)
CFRP 243 0.2 3418
Tab.3  Material properties of CFRP
Fig.2  Strain gauges and measurement layout: (a) arrangement of strain gauges on CFRP; (b) arrangement of strain gauges on stainless steel tube; (c) arrangement of LVDTs.
Fig.3  Failure modes: (a) RA0; (b) RC0; (c) RA1; (d) RA1; (e) final failure modes after peeling off CFRP.
Fig.4  Load–strain relationship of CFRP and tube.
Fig.5  Load versus strain curves for tested specimens: (a) 120 mm × 60 mm × 4 mm; (b) 120 mm × 60 mm × 5 mm; (c) 120 mm × 80 mm × 4 mm; (d) 120 mm × 80 mm × 5 mm; (e) 120 mm × 120 mm × 4 mm; (f) 120 mm × 120 mm × 5 mm; (g) 120 mm × 120 mm × 6 mm; (h) typical load–longitudinal strain curve.
Fig.6  Relative load ( N/ N u)?strain ratio ( ν) curve: (a) n f = 1; (b) n f = 2; (c) n f = 3; (d) typical N/ N u? ν curves.
Fig.7  Relative load ( N/ N u)–strain ratio ( ν) curve of specimens RD.
Fig.8  Relative load ( N/ N u)-strain ratio ( ν) curve of specimen SC0.
Fig.9  Effect of ξ s on N u.
Fig.10  Effect of H/ B on N u.
Fig.11  Effect of CFRP confinement on N u: (a) effect of ξ f r on N u; (b) effect of n f on N u.
specimen ? 1 (mm) ? u (mm) ? 1/ ? u
RA1 8.93 7.27 1.23
RA2 9.84 7.68 1.28
RA3 10.87 7.95 1.37
RB1 10.43 7.18 1.45
RB2 11.03 7.51 1.46
RB3 11.56 7.81 1.48
RC1 15.28 7.35 2.08
RC2 14.14 7.15 1.98
RC3 14.91 7.66 1.95
RD1 13.61 7.14 1.91
RD2 13.42 7.27 1.85
RD3 12.44 7.32 1.70
SA1 13.28 8.17 1.63
SA2 12.43 8.08 1.54
SA3 10.85 8.16 1.33
SB1 16.42 7.82 2.10
SB2 14.27 7.49 1.91
SB3 13.98 7.34 1.90
SC1 17.30 8.02 2.16
SC2 15.72 5.90 2.66
SC3 16.97 7.15 2.37
Tab.4  List of characteristic points of ductility
Fig.12  Sketch map of lateral forces on rectangular stainless steel tube: (a) long side; (b) short side.
Fig.13  Effectively confined concrete core of cross-section.
Fig.14  Stress diagram of equivalent round steel tube.
Fig.15  Stress state of the core concrete.
specimen B (mm) H (mm) t s (mm) R c (mm) E 0 (GPa) υ σ 0.2 (MPa) f ck (MPa) N u (kN) N cr (kN) N cr/ N u Ref. No
120 × 60 × 4-0 60 120 4 4 195 0.3 538 33.44 1261 1184 0.94 this paper
120 × 60 × 5-0 60 120 5 5 200 0.3 581 33.44 1632 1522 0.93
120 × 80 × 4-0 80 120 4 4 196 0.3 516 33.44 1362 1338 0.98
120 × 80 × 5-0 80 120 5 5 200 0.3 558 33.44 1732 1705 0.98
120 × 120 × 4-0 120 120 4 4 203 0.3 549 33.44 1815 1788 0.99
120 × 120 × 5-0 120 120 5 5 203 0.3 578 33.44 2275 2210 0.97
120 × 120 × 6-0 120 120 6 6 203 0.3 592 33.44 2854 2614 0.92
150 × 150 × 6C40 150 150 6 6 194 0.3 497 35.4 2768 3005 1.08 [ 16]
150 × 150 × 6C60 150 150 6 6 194 0.3 497 47.05 2972 3231 1.08
100 × 100 × 5C30 100 100 5 5 180 0.3 458 22.8 1410 1383 0.98 [ 35]
100 × 100 × 5C60 100 100 5 5 180 0.3 458 40.28 1488 1527 1.03
100 × 100 × 5C100 100 100 5 5 180 0.3 458 56.24 1559 1658 1.06
50 × 50 × 2C20 50 50 2 2 205.1 0.3 353 16.3 261 221 0.85 [ 17]
50 × 50 × 2C30 50 50 2 2 205.1 0.3 353 26.5 282 242 0.86
50 × 50 × 3C20 50 50 3 3 202.9 0.3 440 16.3 417 381 0.91
100 × 100 × 3C20 100 100 3 3 195.7 0.3 358 16.3 716 703 0.98
100 × 100 × 3C30 100 100 3 3 195.7 0.3 358 26.5 757 793 1.05
100 × 100 × 5C20 100 100 5 5 195.7 0.3 435 16.3 1449 1270 0.88
100 × 100 × 5C30 100 100 5 5 195.7 0.3 435 26.5 1490 1352 0.91
150 × 150 × 3C20 150 150 3 3 192.6 0.3 268 16.3 1062 962 0.91
150 × 150 × 3C30 150 150 3 3 192.6 0.3 268 26.5 1209 1173 0.97
150 × 150 × 5C20 150 150 5 5 192.6 0.3 340 16.3 1935 1641 0.85
150 × 150 × 5C30 150 150 5 5 192.6 0.3 340 26.5 2048 1840 0.90
304-t8c50 295.52 295.52 7.75 7.75 196.6 0.3 293 36.6 6290 6277 1.00 [ 36]
304-t10c50 300 300 9.87 9.87 196.2 0.3 287 36.6 7113 7212 1.01
304-t12c50 303.74 303.74 11.87 11.87 199.4 0.3 301 36.6 7924 8411 1.06
304-t8c70 295.52 295.52 7.75 7.75 196.6 0.3 293 54.5 6743 7692 1.14
304-t10c70 300 300 9.87 9.87 196.2 0.3 287 54.5 7947 8589 1.09
304-t12c70 303.74 303.74 11.87 11.87 199.4 0.3 301 54.5 8575 9788 1.14
304-t8c80 295.52 295.52 7.75 7.75 196.6 0.3 293 62.4 7436 8309 1.12
304-t10c80 300 300 9.87 9.87 196.2 0.3 287 62.4 8430 9204 1.09
304-t12c80 303.74 303.74 11.87 11.87 199.4 0.3 301 62.4 9257 10402 1.12
Tab.5  Calculation and test values of bearing capacity
Fig.16  Comparison diagram of calculated and test values.
Fig.17  Influence of ξ f r / ξ s on the lifting degree of bearing capacity: (a) H/ B ≥ 1.5; (b) H/ B = 1.0.
Fig.18  Statistics graph of N c f r / N u.
Fig.19  The effect of H/ B on the bearing capacity of CFRP constrained specimens.
1 T Ozbakkaloglu, D J Oehlers. Manufacture and testing of a novel FRP tube confinement system. Engineering Structures, 2008, 30( 9): 2448– 2459
https://doi.org/10.1016/j.engstruct.2008.01.014
2 S P C Marques, D C D S C Marques, J Lins da Silva, M A A Cavalcante. Model for analysis of short columns of concrete confined by fiber-reinforced polymer. Journal of Composites for Construction, 2004, 8( 4): 332– 340
https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(332)
3 T Jiang, J G Teng. Analysis-oriented stress–strain models for FRP-confined concrete. Engineering Structures, 2007, 29( 11): 2968– 2986
https://doi.org/10.1016/j.engstruct.2007.01.010
4 M J Masia, T N Gale, N G Shrive. Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping. Canadian Journal of Civil Engineering, 2004, 31( 1): 1– 13
https://doi.org/10.1139/l03-064
5 Y C Guo, S H Xiao, J W Luo, Y Y Ye, J J Zeng. Confined concrete in fiber-reinforced polymer partially wrapped square columns: Axial compressive behavior and strain distributions by a particle image velocimetry sensing technique. Sensors (Basel), 2018, 18( 12): 4118–
https://doi.org/10.3390/s18124118
6 Y F Wang, H L Wu. Size effect of concrete short columns confined with aramid FRP jackets. Engineering Structures, 2011, 15( 4): 535– 544
7 T Ozbakkaloglu. Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression. Composites Part B:Engineering, 2013, 54 : 97– 111
https://doi.org/10.1016/j.compositesb.2013.05.007
8 J L Yang, S W Lu, J Z Wang, Z Wang. Behavior of CFRP partially wrapped square seawater sea-sand concrete columns under axial compression. Engineering Structures, 2020, 222 : 111119–
https://doi.org/10.1016/j.engstruct.2020.111119
9 Tao Z, Han L H, Zhuang J P. Using CFRP to strengthen concrete-filled steel tubular columns: Stub column tests. In: Fourth International Conference on Advances in Steel Structures. Shanghai: Elsevier Science Ltd, 2005, 701–706
10 Z Tao, L H Han, J P Zhuang. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns. Advances in Structural Engineering, 2007, 10( 1): 37– 46
https://doi.org/10.1260/136943307780150814
11 Y Wang, G Cai, A S Larbi, D Waldmann, K D Tsavdaridis, J Ran. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete. Engineering Structures, 2020, 217 : 110802–
https://doi.org/10.1016/j.engstruct.2020.110802
12 J F Dong, Q Y Wang, Z W Guan. Structural behaviour of recycled aggregate concrete filled steel tube columns strengthened by CFRP. Engineering Structures, 2013, 48 : 532– 542
https://doi.org/10.1016/j.engstruct.2012.11.006
13 M C Sundarraja, G G Prabhu. Experimental study on CFST members strengthened by CFRP composites under compression. Journal of Constructional Steel Research, 2012, 72 : 75– 83
14 F Zhou, C Fang, Y S Chen. Experimental and numerical studies on stainless steel tubular members under axial cyclic loading. Engineering Structures, 2018, 171 : 72– 85
https://doi.org/10.1016/j.engstruct.2018.05.093
15 C Fang, F Zhou, C H Luo. Cold-formed stainless steel RHSs/SHSs under combined compression and cyclic bending. Journal of Constructional Steel Research, 2018, 141 : 9– 22
https://doi.org/10.1016/j.jcsr.2017.11.001
16 B Young, E Ellobody. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. Journal of Constructional Steel Research, 2006, 62( 5): 484– 492
https://doi.org/10.1016/j.jcsr.2005.08.004
17 B Uy, Z Tao, L H Han. Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, 2011, 67( 3): 360– 378
https://doi.org/10.1016/j.jcsr.2010.10.004
18 C Ibañez, D Hernandez-Figueirido, A Piquer. Shape effect on axially loaded high strength CFST stub columns. Journal of Constructional Steel Research, 2018, 147 : 247– 256
https://doi.org/10.1016/j.jcsr.2018.04.005
19 H Y Tang, J L Chen, L Y Fan, X J Sun, C M Peng. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression. Thin-walled Structures, 2020, 146 : 106483–
https://doi.org/10.1016/j.tws.2019.106483
20 GB/T228.1–2010. Tensile Testing of Metallic Materials Part 1: Room Temperature Test Method. Beijing: General Administration of Quality Supervision, inspection and Quarantine of the People’s Republic of China, 2010 (in Chinese)
21 GB/T50080–2016. Standard for Performance Test Method of Ordinary Concrete Mixture. China Construction Industry Press: Ministry of Housing and Urban Rural Development of the People’s Republic of China, 2016 (in Chinese)
22 H Y Tang, X Z Deng, Z B Lin, X Zhou. Analytical and experimental investigation on bond behavior of CFRP-to-stainless steel interface. Composite Structures, 2019, 212 : 94– 105
https://doi.org/10.1016/j.compstruct.2019.01.007
23 A M Erfan, H H Ahmed, B A Mina, T A El-Sayed. Structural performance of eccentric ferrocement RC columns. Nanoscience and Nanotechnology Letters, 2019, 11 : 1– 13
https://doi.org/10.1166/nnl.2019.3008
24 CECS 159: 2004. Technical Specification for Structures with Concrete-filled Rectangular Steel Tube Members. China planning Press: China Association for Engineering Construction Standardization, 2004
25 ACI 318. Building Code Requirements for Reinforced Concrete and Commentary. Detroit: American Concrete Institute, 2005
26 Yu M H. Unified Strength theory and Its Applications. Berlin, Heidelberg: Springer Press, 2004
27 J A B Mander, M J N Priestley, R Park. Theoretical stress−strain model for confined concrete. Journal of Structural Engineering, 1988, 114( 8): 1804– 1826
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
28 Zhong S T. Concrete Filled Steel Tube Structures. 3rd ed. Beijing: Tsinghua University Press, 2003 (in Chinese)
29 N E Shanmugam, B Lakshmi. State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, 2001, 57( 10): 1041– 1080
https://doi.org/10.1016/S0143-974X(01)00021-9
30 H B Ge, T Usami. Strength analysis of concrete filled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30( 3): 259– 281
https://doi.org/10.1016/0143-974X(94)90003-5
31 Y L Long, J Cai. Stress–strain relationship of concrete confined by rectangular steel tubes with binding bars. Journal of Constructional Steel Research, 2013, 88 : 1– 14
https://doi.org/10.1016/j.jcsr.2013.04.006
32 H P Wu, W L Cao, H Y Dong. Axial compressive strength calculation based on the ‘unified theory’ for special-shaped CFT columns with multiple cavities. Engineering Mechanics, 2019, 36( 8): 114– 121
33 K Sakino, H Nakahara, S Morino, I Nishiyama. Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 2004, 130( 2): 180– 188
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
34 J Wei, J H Zhao, Y D Liu, H W Tian. Analysis of ultimate bearing capacity of concrete-filled steel tubular axial compression short columns. Journal of Architecture and Civil Engineering, 2008, 25( 3): 81– 86
35 D Lam, L Gardner. Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 2008, 64( 11): 1275– 1282
https://doi.org/10.1016/j.jcsr.2008.04.012
36 P Dai, L Yang, J Wang. Experimental study on bearing behavior of concrete-filled square stainless steel tube stub columns under axial. Journal of Building Structures, 2021, 42( 6): 182– 189
[1] Baki BAĞRIAÇIK, Ahmet BEYCIOĞLU, Szymon TOPOLINSKI, Emre AKMAZ, Sedat SERT, Esra Deniz GÜNER. Assessment of glass fiber-reinforced polyester pipe powder in soil improvement[J]. Front. Struct. Civ. Eng., 2021, 15(3): 742-753.
[2] Mantu MAJUMDER, Debarghya CHAKRABORTY. Bearing and uplift capacities of under-reamed piles in soft clay underlaid by stiff clay using lower-bound finite element limit analysis[J]. Front. Struct. Civ. Eng., 2021, 15(2): 537-551.
[3] Yasmin MURAD, Wassel AL BODOUR, Ahmed ASHTEYAT. Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets[J]. Front. Struct. Civ. Eng., 2020, 14(2): 554-568.
[4] Shaochun WANG, Xi JIANG, Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
[5] Mohammed FARUQI, Mohammed Sheroz KHAN. Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 81-91.
[6] Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
[7] Sergio A. MARTÍNEZ-GALVÁN, Miguel P. ROMO. Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation[J]. Front. Struct. Civ. Eng., 2018, 12(1): 67-80.
[8] Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model[J]. Front. Struct. Civ. Eng., 2017, 11(2): 228-243.
[9] Xin LIANG,Qian-gong CHENG,Jiu-jiang WU,Jian-ming CHEN. Model test of the group piles foundation of a high-speed railway bridge in mined-out area[J]. Front. Struct. Civ. Eng., 2016, 10(4): 488-498.
[10] Janaka J. KUMARA,Yoshiaki KIKUCHI,Takashi KURASHINA,Takahiro YAJIMA. Effects of inner sleeves on the inner frictional resistance of open-ended piles driven into sand[J]. Front. Struct. Civ. Eng., 2016, 10(4): 499-505.
[11] Navneet DRONAMRAJU,Johannes SOLASS,Jörg HILDEBRAND. Studies of fiber-matrix debonding[J]. Front. Struct. Civ. Eng., 2015, 9(4): 448-456.
[12] Wei-Yong WANG, Guo-Qiang LI, Bao-lin YU. An approach for evaluating fire resistance of high strength Q460 steel columns[J]. Front Struc Civil Eng, 2014, 8(1): 26-35.
[13] Mehdi VEISKARAMI, Ghasem HABIBAGAHI. Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis[J]. Front Struc Civil Eng, 2013, 7(4): 446-455.
[14] Weiming GONG, Guoliang DAI, Haowen ZHANG. Experimental study on pile-end post-grouting piles for super-large bridge pile foundations[J]. Front Arch Civil Eng Chin, 2009, 3(2): 228-233.
[15] YANG Junjie, PENG Guojun, XU Hanyong. Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression[J]. Front. Struct. Civ. Eng., 2008, 2(3): 205-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed