Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2023, Vol. 17 Issue (8) : 1188-1198    https://doi.org/10.1007/s11709-023-0027-5
RESEARCH ARTICLE
Preparation, with graphene, of novel biomimetic self-healing microcapsules with high thermal stability and conductivity
Ying-Yuan WANG1, Yi-Qiu TAN1,2()
1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(5342 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports a comparative study of microcapsules with enhanced thermal stability and electrical conductivity inspired by the bionic thermal insulation of birds’ feathers for self-healing aged asphalt. The work is based on an in situ polymerization with composite shell components of graphene and hexamethoxymethylmelamine resin. By using graphene, microcapsules with rough surfaces are achieved, improving the interface between microcapsules and asphalt. In addition, the microcapsules’ initial thermal decomposition temperature is appropriately high, so that the stability of the microcapsule in the asphalt highway system is protected. The proportion of graphene in the microcapsule shell can regulate the microcapsule’s heat resistance because graphene modifies the shell’s structural makeup. Additionally, the microcapsules’ electrical conductivity is relatively high. The self-healing capability of bitumen sharply increases, providing benefit to the effect of microcapsules on the properties of aged asphalt.

Keywords graphene      microcapsule      bitumen      heat insulation      conductivity     
Corresponding Author(s): Yi-Qiu TAN   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 14 August 2023   Online First Date: 27 September 2023    Issue Date: 16 November 2023
 Cite this article:   
Ying-Yuan WANG,Yi-Qiu TAN. Preparation, with graphene, of novel biomimetic self-healing microcapsules with high thermal stability and conductivity[J]. Front. Struct. Civ. Eng., 2023, 17(8): 1188-1198.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-023-0027-5
https://academic.hep.com.cn/fsce/EN/Y2023/V17/I8/1188
specimencore/shell ratiostirring speed (r/min)graphene content (wt.%)
TGM-02/110000
TGM-1-12/110005
TGM-1-22/15005
TGM-2-12/110005
TGM-2-22/15005
Tab.1  Different types of microcapsules
Fig.1  Morphology of different kinds of microcapsules: (a) TGM-0; (b) TGM-1-1; (c) TGM-2-1; (d) TGM-1-2; (e) TGM-2-2.
Fig.2  SEM images of the microcapsules with 7% graphene: (a) the microcapsules prepared by the method TGM-1; (b) the microcapsules prepared by the method TGM-2.
Fig.3  Optical images of various dry microcapsule powders: (a) microcapsules without graphene; (b) microcapsules prepared by TGM-1; (c) microcapsules prepared by TGM-2.
Fig.4  FTIR spectra of the microcapsules.
Fig.5  XRD pattern of samples: (a) TGM-0; (b) TGM-1-1; (c) TGM-2-1.
Fig.6  Preparation mechanisms of microcapsules: (a) the illustration of resin generation process; (b) the process of method TGM-1; (c) the process of method of TGM-2.
Fig.7  TGA curves of resin and microcapsules: (a) resin; (b) microcapsules of TGM-0; (c) microcapsules of TGM-1-1; (d) microcapsules of TGM-2-1.
Fig.8  TGA cures of microcapsules: (a) the sample of TGM-1-2; (b) the sample of TGM-2-2.
Fig.9  Illustration of shell of microcapsules: (a) formation process and microstructure of shell; (b) villous structure of birds’ feathers.
Fig.10  Self-healing ability test of asphalt.
Fig.11  Change in self-healing capacity of asphalt.
1 F H Nie, W Jian, D Lau. Advanced self-healing asphalt reinforced by graphene structures: An atomistic insight. Journal of Visualized Experiments, 2022, 183(183): e63303
https://doi.org/10.3791/63303
2 Z L Li, X Yu, Y S Liang, S P Wu. Carbon nanomaterials for enhancing the thermal, physical and rheological properties of asphalt binders. Materials, 2021, 14(10): 2585
https://doi.org/10.3390/ma14102585
3 A Tabaković, E Schlangen. Self-healing technology for asphalt pavements. Advances in Polymer Science, 2016, 273: 285–306
https://doi.org/10.1007/12_2015_335
4 S Xu, A Garcia, J F Su, Q T Liu, A Tabakovic, E Schlangen. Self-healing asphalt review: From idea to practice. Advanced Materials Interfaces, 2018, 5(17): 1800536
https://doi.org/10.1002/admi.201800536
5 J F Su, E Schlangen. Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal, 2012, 198: 289–300
https://doi.org/10.1016/j.cej.2012.05.094
6 J F Su, E Schlangen, J Qiu. Design and construction of microcapsules containing rejuvenator for asphalt. Powder Technology, 2013, 235: 563–571
https://doi.org/10.1016/j.powtec.2012.11.013
7 J F Su, J Qiu, E Schlangen. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polymer Degradation & Stability, 2013, 98(6): 1205–1215
https://doi.org/10.1016/j.polymdegradstab.2013.03.008
8 J F Su, J Qiu, E Schlangen, Y Y Wang. Experimental investigation of self-healing behavior of bitumen/microcapsule composites by a modified beam on elastic foundation method. Materials and Structures, 2015, 48(12): 4067–4076
https://doi.org/10.1617/s11527-014-0466-5
9 J F Su, S Han, Y Y Wang, E Schlangen, N X Han, B Liu, X L Zhang, P Yang, W Li. Experimental observation of the self-healing microcapsules containing rejuvenator states in asphalt binder. Construction & Building Materials, 2017, 147: 533–542
https://doi.org/10.1016/j.conbuildmat.2017.04.190
10 A Garcia, J Jelfs, C J Austin. Internal asphalt mixture rejuvenation using capsules. Construction & Building Materials, 2015, 101: 309–316
https://doi.org/10.1016/j.conbuildmat.2015.10.062
11 A Garcia, C J Austin, J Jelfs. Mechanical properties of asphalt mixture containing sunflower oil capsules. Journal of Cleaner Production, 2016, 118: 124–132
https://doi.org/10.1016/j.jclepro.2016.01.072
12 B A Shu, S P Wu, L J Dong, Q Wang, Q T Liu. Microfluidic synthesis of Ca-alginate microcapsules for self-healing of bituminous binder. Materials, 2018, 11(4): 630
https://doi.org/10.3390/ma11040630
13 S Xu, X Y Liu, A Tabakovic, E Schlangen. Investigation of the potential use of calcium alginate capsules for self-healing in porous asphalt concrete. Materials, 2019, 12(1): 168
https://doi.org/10.3390/ma12010168
14 J S Bunch, A M van der Zande, S S Verbridge, I W Frank, D M Tanenbaum, J M Parpia, H G Craighead, P L McEuen. Electromechanical resonators from graphene sheets. Science, 2007, 315(5811): 490–493
https://doi.org/10.1126/science.1136836
15 K Cao, S Z Feng, Y Han, L B Gao, T H Ly, Z P Xu, Y Lu. Elastic straining of free-standing monolayer graphene. Nature Communications, 2020, 11(1): 284
https://doi.org/10.1038/s41467-019-14130-0
16 M Monti, M Rallini, D Puglia, L Peponi, L Torre, J M Kenny. Morphology and electrical properties of graphene-epoxy nanocomposites obtained by different solvent assisted processing methods. Composites Part A: Applied Science and Manufacturing, 2013, 46: 166–172
https://doi.org/10.1016/j.compositesa.2012.11.005
17 C Chen, S H Qiu, M J Cui, S L Qin, G P Yan, H C Zhao, L Wang, Q Xue. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon, 2017, 114: 356–366
https://doi.org/10.1016/j.carbon.2016.12.044
18 Y J Wan, L C Tang, L X Gong, D Yan, Y B Li, L B Wu, J X Jiang, G Q Lai. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon, 2014, 69: 467–480
https://doi.org/10.1016/j.carbon.2013.12.050
19 Y Huangfu, K Ruan, H Qiu, Y Lu, C Liang, J Kong, J Gu. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 121: 265–272
https://doi.org/10.1016/j.compositesa.2019.03.041
20 Y Y Wang, J F Su, E Schlangen, N X Han, S Han, W Li. Fabrication and characterization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method. Construction & Building Materials, 2016, 121: 471–482
https://doi.org/10.1016/j.conbuildmat.2016.06.021
21 Q Q Zhang, D Lin, B W Deng, X Xu, Q Nian, S Y Jin, K D Leedy, H Li, G J Cheng. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Advanced Materials, 2017, 29(28): 1605506
https://doi.org/10.1002/adma.201605506
22 H Sogukpinar. Effect of hairy surface on heat production and thermal insulation on the building. Environmental Progress & Sustainable Energy, 2020, 39(6): e13435
https://doi.org/10.1002/ep.13435
23 Z Fan, A Marconnet, S T Nguyen, C Y H Lim, H M Duong. Effects of heat treatment on the thermal properties of highly nanoporous graphene aerogels using the infrared microscopy technique. International Journal of Heat and Mass Transfer, 2014, 76: 122–127
https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.023
24 Y Long, B Vincent, D York, Z B Zhang, J A Preece. Organic-inorganic double shell composite microcapsules. Chemical Communications, 2010, 46(10): 1718–1720
https://doi.org/10.1039/b911266a
25 Y Long, K Song, D York, Z B Zhang, J A Preece. Engineering the mechanical and physical properties of organic-inorganic composite microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 30–36
https://doi.org/10.1016/j.colsurfa.2013.04.055
26 Y Zhang, J W Tian, J Zhong, X M Shi. Thin nacre-biomimetic coating with super-anticorrosion performance. ACS Nano, 2018, 12(10): 10189–10200
https://doi.org/10.1021/acsnano.8b05183
27 D Q Sun, Q Pang, X Y Zhu, Y Tian, T Lu, Y Yang. Enhanced self-healing process of sustainable asphalt materials containing microcapsules. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9881–9893
https://doi.org/10.1021/acssuschemeng.7b01850
28 T D Dao, H M Jeong. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material. Carbon, 2016, 99: 49–57
https://doi.org/10.1016/j.carbon.2015.12.009
29 I R Segundo, E Freitas, V T F C Branco, S Jr Landi, M F Costa, J O Carneiro. Review and analysis of advances in functionalized, smart, and multifunctional asphalt mixtures. Renewable & Sustainable Energy Reviews, 2021, 151: 111552
https://doi.org/10.1016/j.rser.2021.111552
30 H Z Sun, W Y Liu, Y Wang, X Y Chang, H Zhao, S K Shi, J Xing, D Wu, J Zhang, W Zhang. Evaluation method and influence law of UV-cured polyurethane on the self-healing performance of asphalt and asphalt mixtures. Buildings, 2023, 13(5): 1277
https://doi.org/10.3390/buildings13051277
[1] Damla Nur ÇELİK, Gökhan DURMUŞ. The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator solution[J]. Front. Struct. Civ. Eng., 2022, 16(11): 1486-1499.
[2] Gizem KAÇAROĞLU, Mehmet SALTAN. Investigation of effects of Cocamide Diethanolamide chemical on physical and rheological properties of bituminous binder[J]. Front. Struct. Civ. Eng., 2022, 16(1): 99-116.
[3] Jun LIU, Luxi ZHAO, Fei CHANG, Lin CHI. Mechanical properties and microstructure of multilayer graphene oxide cement mortar[J]. Front. Struct. Civ. Eng., 2021, 15(4): 1058-1070.
[4] Jiqing ZHU, Xiaohu LU. Influence of morphology on high-temperature rheological properties of bitumen modified with styrene-butadiene-styrene (SBS) copolymer[J]. Front. Struct. Civ. Eng., 2021, 15(3): 806-819.
[5] Luthfi Muhammad MAULUDIN, Chahmi OUCIF. The effects of interfacial strength on fractured microcapsule[J]. Front. Struct. Civ. Eng., 2019, 13(2): 353-363.
[6] Yang SHEN, Pengfei HE, Xiaoying ZHUANG. Fracture model for the prediction of the electrical percolation threshold in CNTs/Polymer composites[J]. Front. Struct. Civ. Eng., 2018, 12(1): 125-136.
[7] Satoshi TANIGUCHI, Keiichiro OGAWA, Jun OTANI, Itaru NISHIZAKI. A study on quality evaluation for bituminous mixture using X-ray CT[J]. Front Struc Civil Eng, 2013, 7(2): 89-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed