Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2023, Vol. 17 Issue (3) : 477-502    https://doi.org/10.1007/s11709-023-0918-5
RESEARCH ARTICLE
Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates using an isogeometric approach
Tran Thi Thu THUY()
Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
 Download: PDF(18110 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The analysis of static bending and free and forced vibration responses of functionally graded fluid-infiltrated porous (FGFP) skew and elliptical nanoplates placed on Pasternak’s two-parameter elastic foundation is performed for the first time using isogeometric analysis (IGA) based on the non-uniform rational B-splines (NURBSs) basis function. Three types of porosity distributions affect the mechanical characteristics of materials: symmetric distribution, upper asymmetric distribution, and lower asymmetric distribution. The stress–strain relationship for Biot porous materials was determined using the elastic theory. The general equations of motion of the nanoplates were established using the four-unknown shear deformation plate theory in conjunction with the nonlocal elastic theory and Hamilton’s principle. A computer program that uses IGA to determine the static bending and free and forced vibration of a nanoplate was developed on MATLAB software platform. The accuracy of the computational program was validated via numerical comparison with confidence assertions. This set of programs presents the influence of the following parameters on the static bending and free and forced vibrations of nanoplates: porosity distribution law, porosity coefficient and geometrical parameters, elastic foundation, deviation angle, nonlocal coefficient, different boundary conditions, and Skempton coefficients. The numerical findings demonstrated the uniqueness of the FGFP plate’s behavior when the porosities are saturated with liquid compared with the case without liquid. The findings of this study have significant implications for engineers involved in the design and fabrication of the aforementioned type of structures. Furthermore, this can form the basis for future research on the mechanical responses of the structures.

Keywords static bending      free and forced vibrations      nonlocal theory      isogeometric analysis      fluid-infiltrated porous nanoplates     
Corresponding Author(s): Tran Thi Thu THUY   
Just Accepted Date: 06 February 2023   Online First Date: 06 May 2023    Issue Date: 24 May 2023
 Cite this article:   
Tran Thi Thu THUY. Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates using an isogeometric approach[J]. Front. Struct. Civ. Eng., 2023, 17(3): 477-502.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-023-0918-5
https://academic.hep.com.cn/fsce/EN/Y2023/V17/I3/477
Fig.1  FGFP skew-nanoplates model supported by an elastic foundation.
Fig.2  Shape of function Γz and elastic modulus E( GP a) change based on the thickness of the plate. (a) Function Γz; (b) nz= 0.5; (c) nz= 1; (d) nz= 5.
convergence rate μ p Ω1 Sobhy [42]
3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15
central dimensionless deflection w1 0 2 2.8526 2.9168 2.9375 2.9463 2.9509 2.9536 2.9552 2.9603
3 2.9410 2.9588 2.9599 2.9602 2.9603 2.9603 2.9603
4 2.9611 2.9604 2.9603 2.9603 2.9603 2.9603 2.9603
2 2 5.1050 5.2198 5.2568 5.2727 5.2808 5.2856 5.2886 5.2977
3 5.2631 5.2950 5.2970 5.2974 5.2976 5.2976 5.2977
4 5.2991 5.2978 5.2977 5.2977 5.2977 5.2977 5.2977
non-dimensional natural frequency Ω1 0 2 1.9773 1.9473 1.9396 1.9365 1.9349 1.9340 1.9335 1.9317
3 1.9327 1.9319 1.9318 1.9318 1.9318 1.9318 1.9318
4 1.9318 1.9318 1.9318 1.9318 1.9318 1.9318 1.9318
2 2 1.4772 1.4555 1.4498 1.4475 1.4464 1.4457 1.4453 1.4441
3 1.4447 1.4441 1.4441 1.4441 1.4441 1.4441 1.4441
4 1.4441 1.4441 1.4441 1.4441 1.4441 1.4441 1.4441
Tab.1  Convergence of central dimensionless deflection and natural frequency Ω1 of SSSS homogeneous nanoplate with various nonlocal coefficients subjected to sinusoidally distributed load (h/a = 0.1)
nz μ=0n m μ=2n m
w1 Ω1 w1 Ω1
[42] present [42] present [42] present [42] present
0 2.9603 2.9603 1.9318 1.9317 5.2977 5.2977 1.4441 1.4441
0.5 5.4971 5.4843 1.4969 1.4982 9.8374 9.8146 1.1189 1.1200
2.5 8.8382 8.8055 1.2572 1.2594 15.8166 15.7581 0.9397 0.9416
5.5 10.0219 9.9793 1.2087 1.2113 17.9350 17.8586 0.9035 0.9056
10.5 11.1361 11.0835 1.1609 1.1638 19.9288 19.8346 0.8678 0.8701
Tab.2  Central dimensionless deflection w1 and non-dimensional natural frequency Ω1 of SSSS A l A l2O3 square nanoplates subjected to a sinusoidal distributed load ( a/ h=10)
b/ a a/ h BC method Ω1
φ = 0° φ = 15° φ = 30° φ = 45° φ = 60°
1 1000 SSSS [49] 2.000 2.1147 2.5294 3.5800 6.7179
this study 2.000 2.1147 2.5294 3.5803 6.7220
error (%)* 0 0 0 0.0084 0.061
CCCC [49] 3.6460 3.8691 4.6698 6.6519 12.3399
this study 3.6434 3.8662 4.6658 6.6425 12.2883
error (%) 0.072 0.075 0.0857 0.1415 0.4199
10 SSSS [49] 1.9317 2.0379 2.4195 3.3548 5.9281
this study 1.9317 2.0387 2.4218 3.3698 6.0253
error (%) 0 0.0392 0.0950 0.4451 1.6132
CCCC [49] 3.2921 3.4746 4.1145 5.6040 9.2949
this study 3.3367 3.5229 4.1766 5.7042 9.5268
error (%) 1.3548 1.3901 1.5093 1.7880 2.4949
2 1000 SSSS [49] 1.2500 1.3279 1.6113 2.3306 4.4575
this study 1.2500 1.3279 1.6107 2.3282 4.4527
error (%) 0 0 0.0372 0.1030 0.1077
CCCC [49] 2.4902 2.6568 3.2617 4.7952 9.3628
this study 2.4887 2.6552 3.2597 4.7914 9.3547
error (%) 0.0602 0.0602 0.0613 0.0792 0.0865
10 SSSS [49] 1.2224 1.2969 1.5654 2.2337 4.1201
this study 1.2227 1.2972 1.5659 2.2363 4.1352
error (%) 0.0245 0.0231 0.0319 0.1164 0.3665
CCCC [49] 2.3074 2.4502 2.9583 4.1785 7.3628
this study 2.3288 2.4739 2.9904 4.2346 7.5050
error (%) 0.9275 0.9673 1.0851 1.3426 1.9313
Tab.3  Non-dimensional natural frequency Ω1 of isotropic skew plates
a/ h boundary conditions method Ω1
β = 0.1 β = 0.3 β = 0.5 β = 0.7
5 SSSS this study 0.2109 0.2137 0.2164 0.2190
[48] 0.2127 0.2156 0.2186 0.2216
error (%)* 0.8535 0.8891 1.0166 1.1872
CCCC this study 0.3310 0.3343 0.3375 0.3405
[48] 0.3304 0.3373 0.3370 0.3401
error (%) 0.1813 0.8974 0.1481 0.1175
20 SSSS this study 0.0147 0.0150 0.0152 0.0154
[48] 0.0147 0.0150 0.0153 0.0155
error (%) 0.0000 0.0000 0.6579 0.6494
CCCC this study 0.0265 0.0269 0.0273 0.0277
[48] 0.0266 0.0270 0.0275 0.0278
error (%) 0.3774 0.3717 0.7326 0.3610
Tab.4  Non-dimensional natural frequency Ω1 of FG porous square plates ( λ=0)
φ porosity μ (nm) w1
β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8
FGFP I 0 6.0598 5.9297 5.8087 5.6960 5.5907
1 6.8370 6.6961 6.5648 6.4423 6.3276
2 8.8382 8.6754 8.5232 8.3804 8.2462
FGFP II 0 6.3703 6.2348 6.1087 5.9912 5.8813
1 7.1738 7.0277 6.8915 6.7643 6.6452
2 9.2268 9.0600 8.9037 8.7570 8.6192
FGFP III 0 6.2358 6.1028 5.9790 5.8637 5.7559
1 7.0283 6.8845 6.7506 6.6256 6.5085
2 9.0595 8.8945 8.7401 8.5953 8.4592
15° FGFP I 0 5.5157 5.3959 5.2846 5.1809 5.0841
1 6.2750 6.1441 6.0223 5.9087 5.8024
2 8.2315 8.0780 7.9345 7.8000 7.6737
FGFP II 0 5.8017 5.6767 5.5605 5.4522 5.3511
1 6.5880 6.4521 6.3255 6.2073 6.0967
2 8.5984 8.4408 8.2932 8.1549 8.0249
FGFP III 0 5.6780 5.5554 5.4415 5.3353 5.2362
1 6.4531 6.3195 6.1951 6.0790 5.9704
2 8.4407 8.2850 8.1394 8.0028 7.8745
30° FGFP I 0 4.0537 3.9630 3.8788 3.8006 3.7276
1 4.7448 4.6427 4.5478 4.4594 4.3769
2 6.5289 6.4030 6.2854 6.1754 6.0722
FGFP II 0 4.2702 4.1751 4.0868 4.0047 3.9281
1 4.9892 4.8826 4.7836 4.6913 4.6050
2 6.8303 6.7004 6.5790 6.4653 6.3587
FGFP III 0 4.1774 4.0843 3.9979 3.9176 3.8427
1 4.8847 4.7802 4.6831 4.5926 4.5080
2 6.7018 6.5737 6.4541 6.3422 6.2372
45° FGFP I 0 2.1864 2.1358 2.0890 2.0456 2.0053
1 2.7253 2.6645 2.6081 2.5558 2.5070
2 4.1204 4.0376 3.9605 3.8886 3.8213
FGFP II 0 2.3060 2.2526 2.2031 2.1573 2.1146
1 2.8699 2.8060 2.7468 2.6917 2.6404
2 4.3175 4.2315 4.1514 4.0765 4.0065
FGFP III 0 2.2559 2.2038 2.1556 2.1109 2.0693
1 2.8096 2.7471 2.6892 2.6354 2.5853
2 4.2354 4.1508 4.0721 3.9987 3.9299
Tab.5  Dimensionless deflection w1 of SSSS FGFP skew-nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and Skempton coefficient index
φ porosity μ (nm) Ω1
β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8
FGFP I 0 1.8377 1.8578 1.8771 1.8956 1.9134
1 1.7141 1.7321 1.7494 1.7660 1.7820
2 1.4838 1.4978 1.5112 1.5240 1.5364
FGFP II 0 1.8000 1.8196 1.8383 1.8563 1.8736
1 1.6807 1.6982 1.7149 1.7311 1.7466
2 1.4587 1.4722 1.4852 1.4976 1.5096
FGFP III 0 1.8089 1.8286 1.8474 1.8656 1.8830
1 1.6882 1.7058 1.7227 1.7390 1.7546
2 1.4636 1.4772 1.4903 1.5029 1.5150
15° FGFP I 0 1.9260 1.9474 1.9678 1.9874 2.0063
1 1.7881 1.8071 1.8253 1.8428 1.8597
2 1.5357 1.5503 1.5644 1.5778 1.5908
FGFP II 0 1.8861 1.9068 1.9267 1.9458 1.9641
1 1.7528 1.7712 1.7889 1.8060 1.8223
2 1.5094 1.5235 1.5371 1.5502 1.5628
FGFP III 0 1.8956 1.9164 1.9364 1.9557 1.9741
1 1.7608 1.7794 1.7972 1.8144 1.8309
2 1.5146 1.5289 1.5426 1.5557 1.5684
30° FGFP I 0 2.2453 2.2709 2.2954 2.3189 2.3416
1 2.0503 2.0728 2.0943 2.1150 2.1348
2 1.7158 1.7326 1.7487 1.7642 1.7791
FGFP II 0 2.1972 2.2222 2.2461 2.2691 2.2911
1 2.0085 2.0304 2.0514 2.0715 2.0908
2 1.6853 1.7017 1.7173 1.7324 1.7469
FGFP III 0 2.2088 2.2339 2.2579 2.2810 2.3031
1 2.0182 2.0402 2.0613 2.0815 2.1010
2 1.6915 1.7080 1.7237 1.7389 1.7535
45° FGFP I 0 3.0469 3.0828 3.1171 3.1500 3.1816
1 2.6780 2.7083 2.7373 2.7651 2.7918
2 2.1260 2.1475 2.1682 2.1880 2.2070
FGFP II 0 2.9803 3.0154 3.0491 3.0813 3.1123
1 2.6222 2.6519 2.6803 2.7075 2.7337
2 2.0874 2.1084 2.1286 2.1479 2.1665
FGFP III 0 2.9960 3.0313 3.0650 3.0973 3.1282
1 2.6350 2.6647 2.6932 2.7205 2.7467
2 2.0952 2.1163 2.1366 2.1560 2.1746
Tab.6  Dimensionless natural frequency Ω1 of SSSS FGFP skew-nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and Skempton coefficient index
φ porosity μ (nm) w1
λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
FGFP I 0 2.9875 3.2239 3.5044 3.8524 4.3412
1 3.1099 3.3456 3.6230 3.9630 4.4319
2 3.4350 3.6671 3.9349 4.2545 4.6780
FGFP II 0 2.9875 3.3934 3.9906 4.9810 7.0464
1 3.1099 3.5153 4.1047 5.0641 6.9945
2 3.4350 3.8346 4.3981 5.2736 6.8936
FGFP III 0 2.9875 3.3229 3.8192 4.6541 6.4639
1 3.1099 3.4446 3.9350 4.7473 6.4552
2 3.4350 3.7648 4.2359 4.9864 6.4535
15° FGFP I 0 2.6914 2.9073 3.1642 3.4842 3.9363
1 2.8129 3.0289 3.2839 3.5976 4.0324
2 3.1356 3.3503 3.5985 3.8958 4.2915
FGFP II 0 2.6914 3.0601 3.6035 4.5081 6.4095
1 2.8129 3.1826 3.7211 4.6006 6.3833
2 3.1356 3.5034 4.0229 4.8326 6.3398
FGFP III 0 2.6914 2.9970 3.4498 4.2137 5.8787
1 2.8129 3.1190 3.5681 4.3140 5.8901
2 3.1356 3.4399 3.8753 4.5703 5.9342
30° FGFP I 0 1.9279 2.0888 2.2823 2.5265 2.8774
1 2.0424 2.2056 2.3999 2.6419 2.9825
2 2.3473 2.5143 2.7089 2.9444 3.2622
FGFP II 0 1.9279 2.1975 2.5970 3.2683 4.7102
1 2.0424 2.3166 2.7178 3.3791 4.7464
2 2.3473 2.6285 3.0276 3.6543 4.8401
FGFP III 0 1.9279 2.1538 2.4902 3.0614 4.3239
1 2.0424 2.2717 2.6097 3.1743 4.3825
2 2.3473 2.5822 2.9195 3.4606 4.5325
45° FGFP I 0 1.0210 1.1124 1.2244 1.3693 1.5844
1 1.1145 1.2098 1.3251 1.4722 1.6852
2 1.3637 1.4670 1.5893 1.7403 1.9492
FGFP II 0 1.0210 1.1672 1.3849 1.7544 2.5702
1 1.1145 1.2677 1.4929 1.8676 2.6621
2 1.3637 1.5309 1.7690 2.1460 2.8740
FGFP III 0 1.0210 1.1468 1.3351 1.6569 2.3777
1 1.1145 1.2459 1.4403 1.7670 2.4739
2 1.3637 1.5065 1.7123 2.0436 2.7044
Tab.7  Dimensionless deflection w1 of CSCS FGFP skew-nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and porosity coefficient
φ porosity μ (nm) Ω1
λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
FGFP I 0 2.5443 2.5332 2.5310 2.5432 2.5807
1 2.3461 2.3393 2.3412 2.3572 2.3980
2 1.9858 1.9873 1.9973 2.0211 2.0692
FGFP II 0 2.5443 2.4803 2.4045 2.3114 2.1929
1 2.3461 2.2925 2.2301 2.1558 2.0694
2 1.9858 1.9524 1.9159 1.8781 1.8526
FGFP III 0 2.5443 2.4918 2.4258 2.3392 2.2187
1 2.3461 2.3025 2.2483 2.1790 2.0886
2 1.9858 1.9591 1.9276 1.8911 1.8576
15° FGFP I 0 2.6787 2.6657 2.6616 2.6720 2.7077
1 2.4573 2.4490 2.4494 2.4641 2.5034
2 2.0628 2.0635 2.0727 2.0958 2.1431
FGFP II 0 2.6787 2.6101 2.5286 2.4280 2.2980
1 2.4573 2.4000 2.3332 2.2531 2.1581
2 2.0628 2.0272 1.9882 1.9473 1.9175
FGFP III 0 2.6787 2.6220 2.5506 2.4569 2.3253
1 2.4573 2.4104 2.3521 2.2772 2.1784
2 2.0628 2.0342 2.0002 1.9607 1.9231
30° FGFP I 0 3.1565 3.1363 3.1252 3.1287 3.1566
1 2.8439 2.8301 2.8252 2.8345 2.8673
2 2.3235 2.3212 2.3276 2.3479 2.3915
FGFP II 0 3.1565 3.0719 2.9707 2.8442 2.6743
1 2.8439 2.7743 2.6924 2.5928 2.4686
2 2.3235 2.2809 2.2337 2.1825 2.1392
FGFP III 0 3.1565 3.0848 2.9945 2.8754 2.7054
1 2.8439 2.7855 2.7127 2.6188 2.4920
2 2.3235 2.2883 2.2464 2.1968 2.1460
45° FGFP I 0 4.3078 4.2681 4.2368 4.2188 4.2203
1 3.7233 3.6953 3.6757 3.6689 3.6805
2 2.8821 2.8724 2.8713 2.8832 2.9149
FGFP II 0 4.3078 4.1861 4.0402 3.8553 3.5958
1 3.7233 3.6269 3.5129 3.3720 3.1868
2 2.8821 2.8256 2.7624 2.6920 2.6239
FGFP III 0 4.3078 4.1990 4.0625 3.8834 3.6262
1 3.7233 3.6383 3.5327 3.3968 3.2108
2 2.8821 2.8329 2.7743 2.7048 2.6298
Tab.8  Dimensionless natural frequency Ω1 of CSCS FGFP skew-nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and porosity coefficient
Fig.3  Influence of plate geometry and different boundary conditions on dimensionless deflection of FGFP skew-nanoplates resting on elastic foundations with the porosity type I. (a)a/hw1; (b) μw1; (c) nzw1; (d) φw1.
Fig.4  Influence of plate geometry and different boundary conditions on dimensionless natural frequency Q1 of FGFP skew-nanoplates resting on elastic foundations with the porosity type I. (a) a/h–Ω1; (b) μ–Ω1; (c) nz–Ω1; (d) φ–Ω1.
Fig.5  Influence of material factors, elastic foundation, and different boundary conditions on dimensionless deflection w1 of FGFP skew nanoplates resting on elastic foundations with the porosity type I. (a)λw1; (b) βw1; (c) Kww1; (d) Krw1.
Fig.6  Influence of material factors, elastic foundation, and different boundary conditions on dimensionless natural frequency Q1 of FGFP skew-nanoplates resting on elastic foundations the porosity type I. (a) λ–Ω1; (b) β–Ω1; (c) Kw–Ω1; (d) Kr–Ω1.
Fig.7  Shape of first four vibration modes of FGFP skew-nanoplates resting on elastic foundations with FGFP I porosity and SSSS boundary conditions. (a) Mode 1, φ= 0; (b) Mode 1, φ= 30; (c) Mode 2, φ= 0; (d) Mode 2, φ= 30; (e) Mode 3, φ=0; (f) Mode 3, φ= 30; (g) Mode 4, φ= 0; (h) Mode 4, φ= 30.
Fig.8  Comparison between deflection time-history of the center of the FG square plate under a uniform load.
Fig.9  Types of load: sinusoidal load, step load, triangular load, and explosive blast load with ω1=5.24THz.
Fig.10  Effect of the nonlocal coefficient μ( nm) on the dynamic response of dimensionless deflection W1 of SSSS FGFP I skew-nanoplates resting on elastic foundation. (a) Sinusoidal load; (b) step load; (c) triagular load; (d) explosive blast load.
Fig.11  Effect of the Skempton coefficient index β on the dynamic response of dimensionless deflection W1 of SSSS FGFP I skew-nanoplates resting on elastic foundation. (a) Sinusoidal load; (b) step load; (c) triagular load; (d) explosive blast load.
Fig.12  Effect of the porosity coefficient λ on the dynamic response of dimensionless deflection W1 of SFSS FGFP I skew-nanoplates resting on elastic foundation. (a) Sinusoidal load; (b) step load; (c) triagular load; (d) explosive blast load.
Fig.13  Effect of the deviation angle φ on the dynamic response of dimensionless deflection W1 of CCCC FGFP I skew-nanoplates resting on elastic foundation. (a) Sinusoidal load; (b) step load; (c) triagular load; (d) explosive blast load.
Fig.14  Effect of stiffness foundation Kw and Ks on the dynamic response of dimensionless deflection W1 of SFSS FGFP I skew-nanoplates resting on elastic foundation. (a) Sinusoidal load; (b) step load; (c) triagular load; (d) explosive blast load.
Ry/Rx porosity μ(nm) w1
β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8
2 FGFP I 0 11.5210 11.2903 11.0751 10.8740 10.6855
1 12.2219 11.9882 11.7700 11.5655 11.3737
2 13.9308 13.6975 13.4785 13.2725 13.0783
FGFP II 0 12.1118 11.8751 11.6539 11.4470 11.2529
1 12.8166 12.5782 12.3550 12.1459 11.9493
2 14.5161 14.2811 14.0603 13.8523 13.6560
FGFP III 0 11.7521 11.5192 11.3019 11.0986 10.9081
1 12.4560 12.2206 12.0006 11.7945 11.6010
2 14.1625 13.9288 13.7093 13.5027 13.3079
1 FGFP I 0 5.2028 5.0702 4.9480 4.8352 4.7307
1 5.8620 5.7184 5.5859 5.4633 5.3495
2 7.4170 7.2575 7.1095 6.9717 6.8431
FGFP II 0 5.5184 5.3791 5.2507 5.1321 5.0221
1 6.1992 6.0494 5.9111 5.7830 5.6640
2 7.7821 7.6186 7.4666 7.3250 7.1927
FGFP III 0 5.3286 5.1935 5.0691 4.9542 4.8477
1 5.9972 5.8514 5.7168 5.5923 5.4766
2 7.5632 7.4024 7.2531 7.1141 6.9844
0.5 FGFP I 0 1.0864 1.0590 1.0337 1.0105 0.9890
1 1.5092 1.4723 1.4383 1.4070 1.3779
2 2.5339 2.4794 2.4290 2.3821 2.3385
FGFP II 0 1.1560 1.1266 1.0996 1.0747 1.0517
1 1.6028 1.5636 1.5274 1.4940 1.4631
2 2.6704 2.6134 2.5606 2.5116 2.4659
FGFP III 0 1.1167 1.0885 1.0627 1.0388 1.0168
1 1.5503 1.5125 1.4778 1.4457 1.4160
2 2.5934 2.5381 2.4869 2.4394 2.3951
Tab.9  Dimensionless deflection w1 of SSSS FGFP elliptical nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and Skempton coefficient index
Ry/R x porosity μ(nm) Ω1
β = 0 β = 0.2 β = 0.4 β = 0.6 β = β = 0.8
2 FGFP I 0 2.1555 2.1795 2.2026 2.2246 2.2458
1 2.0401 2.0619 2.0828 2.1028 2.1219
2 1.8122 1.8293 1.8457 1.8614 1.8765
FGFP II 0 2.1080 2.1316 2.1541 2.1757 2.1964
1 1.9977 2.0190 2.0394 2.0589 2.0777
2 1.7805 1.7971 1.8130 1.8283 1.8430
FGFP III 0 2.1233 2.1469 2.1695 2.1912 2.2119
1 2.0112 2.0325 2.0530 2.0726 2.0914
2 1.7894 1.8061 1.8222 1.8375 1.8523
1 FGFP I 0 3.0687 3.1037 3.1370 3.1690 3.1995
1 2.7863 2.8167 2.8458 2.8736 2.9002
2 2.3162 2.3385 2.3598 2.3802 2.3998
FGFP II 0 3.0007 3.0352 3.0681 3.0996 3.1297
1 2.7278 2.7577 2.7863 2.8137 2.8399
2 2.2751 2.2969 2.3178 2.3378 2.3570
FGFP III 0 3.0213 3.0556 3.0883 3.1197 3.1496
1 2.7456 2.7755 2.8040 2.8313 2.8574
2 2.2864 2.3083 2.3292 2.3492 2.3684
0.5 FGFP I 0 7.0703 7.1412 7.2084 7.2722 7.3328
1 5.5953 5.6501 5.7022 5.7517 5.7989
2 4.0222 4.0571 4.0902 4.1217 4.1518
FGFP II 0 6.9565 7.0283 7.0965 7.1612 7.2228
1 5.5051 5.5605 5.6130 5.6630 5.7106
2 3.9670 4.0019 4.0351 4.0668 4.0970
FGFP III 0 6.9541 7.0235 7.0893 7.1518 7.2112
1 5.5136 5.5674 5.6185 5.6671 5.7133
2 3.9729 4.0070 4.0395 4.0704 4.0999
Tab.10  Dimensionless natural frequency Ω1 of CCCC FGFP elliptical nanoplates resting on elastic foundations with respect to porosity, nonlocal coefficient, and Skempton coefficient index
Fig.15  Geometry and element mesh of an elliptical nanoplate. (a) Geometric configuration; (b) control point net and 11 × 11 cubic elements.
Fig.16  Effect of some parameters on the dynamic response of dimensionless deflection 1 of SSSS FGFP I elliptical nanoplates resting on elastic foundation under triangular load. (a) Nonlocal coefficient μ( nm); (b) Skempton coefficient index β; (c) Ry/Rx ratio; (d) structural drag coefficient ξ.
Fig.17  First four vibration modes shape of FGFP elliptical nanoplate resting on elastic foundations with FGFP I porosity and SSSS boundary conditions. (a) Mode 1, Ry/Rx= 1; (b) Mode 1, Ry/Rx= 2; (c) Mode 2, Ry/Rx= 1; (d) Mode 2, Ry/Rx= 2; (e) Mode 3, Ry/Rx= 1; (f) Mode 3, Ry/Rx= 2; (g) Mode 4, Ry/Rx= 1; (h) Mode 4, Ry/Rx= 2.
1 V P Nguyen, C Anitescu, S P A Bordas, T Rabczuk. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116
https://doi.org/10.1016/j.matcom.2015.05.008
2 B Jüttler, U Langer, A Mantzaflaris, S E Moore, W Zulehner. Geometry + simulation modules: Implementing isogeometric analysis. Proceedings in Applied Mathematics and Mechanics, 2014, 14(1): 961–962
https://doi.org/10.1002/pamm.201410461
3 B Marussig, T J R Hughes. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Archives of Computational Methods in Engineering, 2018, 25(4): 1059–1127
https://doi.org/10.1007/s11831-017-9220-9
4 T J R Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39−41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
5 T J R Hughes, A Reali, G Sangalli. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49−50): 4104–4124
https://doi.org/10.1016/j.cma.2008.04.006
6 J A CottrellA RealiY BazilevsT J R Hughes. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41−43): 5257−5296
7 T J R HughesA RealiG Sangalli. Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 301−313
8 M R DörfelB JüttlerB Simeon. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 264−275
9 A BuffaG SangalliR Vazquez. Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17−20): 1143−1152
10 Y Bazilevs, I Akkerman. Large eddy simulation of turbulent Taylor−Couette flow using isogeometric analysis and the residual-based variational multiscale method. Journal of Computational Physics, 2010, 229(9): 3402–3414
https://doi.org/10.1016/j.jcp.2010.01.008
11 E CohenT MartinR M KirbyT LycheR F Riesenfeld. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5−8): 334−356
12 N Valizadeh, S Natarajan, O A Gonzalez-Estrada, T Rabczuk, T Q Bui, S P A Bordas. NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326
https://doi.org/10.1016/j.compstruct.2012.11.008
13 S M Dsouza, T M Varghese, P R Budarapu, S Natarajan. A non-intrusive stochastic isogeometric analysis of functionally graded plates with material uncertainty. Axioms, 2020, 9(3): 92
14 Q Hu, Y Xia, S Natarajan, A Zilian, P Hu, S P A Bordas. Isogeometric analysis of thin Reissner–Mindlin shells: Locking phenomena and B-bar method. Computational Mechanics, 2020, 65(5): 1323–1341
https://doi.org/10.1007/s00466-020-01821-5
15 S H Ha, K K Choi, S Cho. Numerical method for shape optimization using T-spline based isogeometric method. Structural and Multidisciplinary Optimization, 2010, 42(3): 417–428
https://doi.org/10.1007/s00158-010-0503-0
16 Y BazilevsV CaloY ZhangT Hughes. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 2006, 38(4−5): 310−322
17 F Auricchio, L B Da Veiga, T J R Hughes, A Reali, G Sangalli. Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences, 2010, 20(11): 2075–2107
https://doi.org/10.1142/S0218202510004878
18 R Schmidt, J Kiendl, K U Bletzinger, R Wüchner. Realization of an integrated structural design process: Analysis-suitable geometric modelling and isogeometric analysis. Computing and Visualization in Science, 2010, 13(7): 315–330
https://doi.org/10.1007/s00791-010-0147-z
19 J Bazilevs. Isogeometric analysis of turbulence and fluid-structure interaction. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin, 2006
20 Y Wang, Z Wang, Z Xia, L Hien Poh. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling in Engineering & Sciences, 2018, 117(3): 455–507
https://doi.org/10.31614/cmes.2018.04603
21 Z BontinckJ CornoGersem H DeS KurzA Pels S SchöpsF WolfFalco C de J DölzR VázquezU Römer. Recent advances of isogeometric analysis in computational electromagnetics. 2017, arXiv: 1709.06004
22 L De Lorenzis, P Wriggers, T J R Hughes. Isogeometric contact: A review. GAMM Mitteilungen, 2014, 37(1): 85–123
23 J Gao, M Xiao, Y Zhang, L Gao. A comprehensive review of isogeometric topology optimization: Methods, applications and prospects. Chinese Journal of Mechanical Engineering, 2020, 33(1): 87
https://doi.org/10.1186/s10033-020-00503-w
24 R Ansari, A Norouzzadeh. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis. Physica E: Low-Dimensional System and Nanostructures, 2016, 84: 84–97
25 F Fan, B Lei, S Sahmani, B Safaei. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-walled Structures, 2020, 154: 106841
https://doi.org/10.1016/j.tws.2020.106841
26 A Norouzzadeh, R Ansari. Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-walled Structures, 2018, 127: 354–372
https://doi.org/10.1016/j.tws.2017.11.040
27 F Fan, Y Xu, S Sahmani, B Safaei. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113400
https://doi.org/10.1016/j.cma.2020.113400
28 J Qiu, S Sahmani, B Safaei. On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates. Mechanics Based Design of Structures and Machines, 2020, 51(2): 1–25
29 Q H Pham, P C Nguyen, V K Tran, T Nguyen-Thoi. Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium. Defence Technology, 2022, 18(8): 1311–1329
30 F Rahmouni, M Elajrami, K Madani, R D S G Campilho. Isogeometric analysis based on non-uniform rational B-splines technology of stress and failure strength in inter-ply hybrid laminated composite. Journal of Composite Materials, 2022, 56(18): 2921–2932
https://doi.org/10.1177/00219983221105313
31 D T Luat, D Van Thom, T T Thanh, P Van Minh, T Van Ke, P Van Vinh. Mechanical analysis of bi-functionally graded sandwich nanobeams. Advances in Nano Research, 2021, 11(1): 55–71
32 K Yakoubi, S Montassir, H Moustabchir, A Elkhalfi, M L Scutaru, S Vlase. Vlase S. T-stress evaluation based cracking of pipes using an extended isogeometric analysis (X-IGA). Symmetry, 2022, 14(5): 1065
https://doi.org/10.3390/sym14051065
33 X Peng, H Lian, Z Ma, C Zheng. Intrinsic extended isogeometric analysis with emphasis on capturing high gradients or singularities. Engineering Analysis with Boundary Elements, 2022, 134: 231–240
https://doi.org/10.1016/j.enganabound.2021.09.022
34 Y Xia, H Wang, G Zheng, G Shen, P Hu. Discontinuous Galerkin isogeometric analysis with peridynamic model for crack simulation of shell structure. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115193
https://doi.org/10.1016/j.cma.2022.115193
35 Y Sun, Y Zhou, Z Ke, K Tian, B Wang. Stiffener layout optimization framework by isogeometric analysis-based stiffness spreading method. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114348
https://doi.org/10.1016/j.cma.2021.114348
36 D S Bombarde, M Agrawal, S S Gautam, A Nandy. A locking-free formulation for three-dimensional isogeometric analysis. Materials Today: Proceedings, 2022, 66: 1710–1715
https://doi.org/10.1016/j.matpr.2022.05.266
37 P Shi, C Dong. A refined hyperbolic shear deformation theory for nonlinear bending and vibration isogeometric analysis of laminated composite plates. Thin-walled Structures, 2022, 174: 109031
https://doi.org/10.1016/j.tws.2022.109031
38 L Wang, X Yuan, C Xiong, H Wu. A priori error analysis of discontinuous Galerkin isogeometric analysis approximations of Burgers on surface. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114342
https://doi.org/10.1016/j.cma.2021.114342
39 L M Thai, D T Luat, V B Phung, P Van Minh, D Van Thom. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Archive of Applied Mechanics, 2022, 92(1): 163–182
https://doi.org/10.1007/s00419-021-02048-3
40 F Ebrahimi, S Habibi. Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel and Composite Structures, 2016, 20(1): 205–225
https://doi.org/10.12989/scs.2016.20.1.205
41 V K Tran, Q H Pham, T Nguyen-Thoi. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers, 2022, 38(2): 1465–1490
https://doi.org/10.1007/s00366-020-01107-7
42 M Sobhy. A comprehensive study on FGM nanoplates embedded in an elastic medium. Composite Structures, 2015, 134: 966–980
https://doi.org/10.1016/j.compstruct.2015.08.102
43 M A Biot. Theory of buckling of a porous slab and its thermoelastic analogy. Journal of Applied Mechanics, 1964, 31(2): 194–198
https://doi.org/10.1115/1.3629586
44 Q H Pham, V K Tran, T T Tran, T Nguyen-Thoi, P C Nguyen, V D Pham. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation. Case Studies in Thermal Engineering, 2021, 26: 101170
https://doi.org/10.1016/j.csite.2021.101170
45 N Thai Dung, L Minh Thai, T Van Ke, T Thi Huong Huyen, P Van Minh. Nonlinear static bending analysis of microplates resting on imperfect two-parameter elastic foundations using modified couple stress theory. Comptes Rendus. Mécanique, 2022, 350(G1): 121–141
https://doi.org/10.5802/crmeca.105
46 A Anjomshoa, A R Shahidi, B Hassani, E Jomehzadeh. Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory. Applied Mathematical Modelling, 2014, 38(24): 5934–5955
https://doi.org/10.1016/j.apm.2014.03.036
47 J N Reddy. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000, 47(1−3): 663−684
48 N T Nguyen, D Hui, J Lee, H Nguyen-Xuan. An efficient computational approach for size-dependent analysis of functionally graded nanoplates. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 191–218
https://doi.org/10.1016/j.cma.2015.07.021
49 K M Liew, Y Xiang, S Kitipornchai, C M Wang. Vibration of thick skew plates based on mindlin shear deformation plate theory. Journal of Sound and Vibration, 1993, 168(1): 39–69
https://doi.org/10.1006/jsvi.1993.1361
[1] Sayed AHMED, Hossam ATEF, Mohamed HUSAIN. Experimental and parametrical investigation of pre-stressed ultrahigh-performance fiber-reinforced concrete railway sleepers[J]. Front. Struct. Civ. Eng., 2023, 17(3): 411-428.
[2] Van Chinh NGUYEN, Trung Thanh TRAN, Trung NGUYEN-THOI, Quoc-Hoa PHAM. A novel finite element formulation for static bending analysis of functionally graded porous sandwich plates[J]. Front. Struct. Civ. Eng., 2022, 16(12): 1599-1620.
[3] Asghar AMANI DASHLEJEH. Isogeometric analysis of coupled thermo-elastodynamic problems under cyclic thermal shock[J]. Front. Struct. Civ. Eng., 2019, 13(2): 397-405.
[4] Jinhai ZHAO, Hesheng TANG, Songtao XUE. Peridynamics versus XFEM: a comparative study for quasi-static crack problems[J]. Front. Struct. Civ. Eng., 2018, 12(4): 548-557.
[5] Hanjie ZHANG,Junzhao WU,Dongdong WANG. Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method[J]. Front. Struct. Civ. Eng., 2015, 9(4): 405-419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed