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Appendix A 

 

The stiffness matrix of a homogeneous soil layer is presented here. With respect to deformation, plane 

strain is assumed in the xz-plane. Hence, the wave equations, in the absence of body forces, for a 

homogeneous elastic soil layer in the Cartesian coordinate system can be expressed as follows: 

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 𝜌s

𝜕2𝑢𝑥

𝜕𝑡2 , 

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑧

𝜕𝑧
= 𝜌s

𝜕2𝑢𝑧

𝜕𝑡2  , (A1) 

where 𝜎𝑥 and 𝜎𝑧 denote the normal stresses in x and z directions, respectively; 𝜏𝑥𝑧 denote the shear 

stress in xz-plane; 𝑢𝑥 and 𝑢𝑧 denote the displacements along x and z directions, respectively; 𝜌s denotes 

the density of the soil layer; and t denotes time. 

The constitutive relation of a homogeneous elastic soil layer is as follows: 

𝜎𝑥 = (𝜆 + 2𝜇)
𝜕𝑢𝑥

𝜕𝑥
+ 𝜆

𝜕𝑢𝑧

𝜕𝑧
 

𝜎𝑧 = 𝜆
𝜕𝑢𝑥

𝜕𝑥
+ (𝜆 + 2𝜇)

𝜕𝑢𝑧

𝜕𝑧
, 

𝜏𝑥𝑧 = 𝜇(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
) , (A2) 

where 𝜆 and 𝜇 denote the Lamé constants of the soil layer. 

Substituting Eq. (A2) into Eq. (A1) leads to the following expression. 

(𝜆 + 2𝜇)
𝜕2𝑢𝑥

𝜕𝑥2
+ (𝜆 + 𝜇)

𝜕2𝑢𝑧

𝜕𝑥𝜕𝑧
+ 𝜇

𝜕2𝑢𝑥

𝜕𝑧2
= 𝜌s

𝜕𝑢𝑥

𝜕𝑡2
 

𝜇
𝜕2𝑢𝑧

𝜕𝑥2 + (𝜆 + 𝜇)
𝜕2𝑢𝑥

𝜕𝑥𝜕𝑧
+ (𝜆 + 2𝜇)

𝜕2𝑢𝑧

𝜕𝑧2 = 𝜌s
𝜕𝑢𝑧

𝜕𝑡2. (A3) 

The double Fourier transform can be defined and inverted as follows: 

𝑓(𝑘, 𝜔) = 𝑭[𝑓(𝑥, 𝑡)] = ∫ ∫ 𝑓
∞

−∞

∞

−∞

(𝑥, 𝑡)e−i(𝜔𝑡−𝑘𝑥)d𝑥d𝑡 

𝑓(𝑥, 𝑡) = 𝑭−1[𝑓(𝑘, 𝜔)] =
1

(2π)2 ∫ ∫ 𝑓
∞

−∞

∞

−∞
(𝑘, 𝜔)ei(𝜔𝑡−𝑘𝑥)d𝑘d𝜔, (A4) 

where 𝑭[⋅]and 𝑭−1[⋅]denote the double Fourier transform and its inversion, respectively; i denotes the 

imaginary unit; 𝜔 denotes the circular frequency; and k denotes the wavenumber along the horizontal 

direction, which is as follows: 

𝑘 =
𝜔

𝑉p
cos 𝜃 for P-wave, 

𝑘 =
𝜔

𝑉s
cos 𝜃 for SV-wave, (A5) 

where 𝜃 denotes the incident angle defined by the angle between the wave propagation direction and 

horizontal direction; and 𝑉p and 𝑉s denote the velocities of P-wave and SV-wave, respectively. 

Applying the double Fourier transform to Eq. (A3) yields 

𝑘2(𝜆 + 2𝜇)�̃�𝑥 + i𝑘(𝜆 + 𝜇)
𝜕�̃�𝑧

𝜕𝑧
− 𝜇

𝜕2�̃�𝑥

𝜕𝑧2
− 𝜌s𝜔2�̃�𝑥 = 0 

𝑘2𝜇�̃�𝑧 + i𝑘(𝜆 + 𝜇)
𝜕�̃�𝑥

𝜕𝑧
− (𝜆 + 2𝜇)

𝜕2�̃�𝑧

𝜕𝑧2 − 𝜌s𝜔2�̃�𝑧 = 0 , (A6) 

in which tilde “~” denotes the parallel variables in the frequency–wavenumber domain. 

We can define the vector 
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�̃� = [�̃�𝑥 , −i�̃�𝑧]T , (A7) 

in which the superscript “T” denotes the transposed matrix or vector. Thus, Eq. (A6) can be rewritten in 

matrix form as follows: 

𝑘2𝑫𝑥𝑥�̃� + 𝑘𝑩𝑥𝑧
𝜕�̃�

𝜕𝑧
− 𝑫𝑧𝑧

𝜕2�̃�

𝜕𝑧2 − 𝜌s𝜔2�̃� = 0 , (A8) 

where 

𝑫𝑥𝑥 = [
𝜆 + 2𝜇 0

0 𝜇
] 

𝑩𝑥𝑧 = [
0 −(𝜆 + 𝜇)

𝜆 + 𝜇 0
] (A9) 

𝑫𝑧𝑧 = [
𝜇 0
0 𝜆 + 2𝜇

]. 

Assuming �̃�(𝑘, 𝜔, 𝑧) = �̃�0(𝑘, 𝜔)e𝑛𝑧 and substituting it into Eq. (A8) leads to the following 

expression. 

(𝑘2𝑫𝑥𝑥 − 𝑛2𝑫𝑧𝑧 + 𝑛𝑘𝑩𝑥𝑧 − 𝜌𝑠𝜔2𝑰)�̃�0 = 0, (A10) 

where I denotes the unit matrix. Eq. (A10) is the governing equation of the problem in the frequency–

wavenumber domain, which is an eigenvalue problem with an eigenvalue of n and the corresponding 

eigenvector of �̃�0. 

By setting the coefficient determinant of Eq. (A10) as zero, we obtain 

𝑛 = ±𝑘𝑝, ±𝑘𝑠 , (A11) 

and their corresponding eigenvectors can be obtained as follows: 

�̃�0 = [1, ±𝑝]T, [±𝑠, 1]T, (A12) 

where 

𝑝 = √1 − (
𝜔

𝑘𝑉p
)

2

 

𝑠 = √1 − (
𝜔

𝑘𝑉s
)

2
. (A13) 

Therefore, the displacement responses can be obtained as follows: 

�̃� = 𝑹1𝑬𝑧
−1𝑨 + 𝑹2𝑬𝑧𝑩, (A14) 

where 

𝑹1 = [
1 −𝑠

−𝑝 1
] 

𝑹2 = [
1 𝑠
𝑝 1

] 

𝑬𝑧 = [e𝑘𝑝𝑧 0
0 e𝑘𝑠𝑧] 

𝑨 = [𝐴p, 𝐴s]T 

𝑩 = [𝐵p, 𝐵s]T, (A15) 

where Ap, Bp, As, and Bs denote unknown constants pertinent to the upward and downward wave 

amplitudes, and superscript “-1” denotes the inverse matrix. 

By applying the double Fourier transform to Eq. (A2), the following expression can be obtained. 

�̃�𝑧 = −i𝑘𝜆�̃�𝑥 + (𝜆 + 2𝜇)
𝜕�̃�𝑧

𝜕𝑧
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�̃�𝑥𝑧 = 𝜇
𝜕�̃�𝑥

𝜕𝑧
− i𝑘𝜇�̃�𝑧. (A16) 

Analogously, by defining �̃� = [�̃�𝑥𝑧, −i�̃�𝑧]T and substituting it into Eq. (A16), we obtain the following 

�̃� = 𝑘𝜇[−𝑸1𝑬𝑧
−1𝑨 + 𝑸2𝑬𝑧𝑩], (A17) 

where 

𝑸1 = [
2𝑝 −(1 + 𝑠2)

−(1 + 𝑠2) 2𝑠
] 

𝑸2 = [
2𝑝 1 + 𝑠2

1 + 𝑠2 2𝑠
]. (A18) 

A horizontal homogeneous soil layer with thickness h, as shown in Fig. A1, is considered. Assigning 

suffixes 1 and 2 to the upper and lower surfaces yields: 

 

Fig. A1 Displacements and stresses of a single layer. 

[
�̃�1

�̃�2

] = [
𝑹1𝑬h/2

−1 𝑹2𝑬h/2

𝑹1𝑬−h/2
−1 𝑹2𝑬−h/2

] [
𝑨
𝑩

] , (A19) 

[
�̃�1

−�̃�2

] = 𝑘𝜇 [
−𝑸1𝑬h/2

−1 𝑸2𝑬h/2

𝑸1𝑬−h/2
−1 −𝑸2𝑬−h/2

] [
𝑨
𝑩

] , (A20) 

[
�̃�1

−�̃�2

] = 𝑲 [
�̃�1

�̃�2

] , (A21) 

𝑲 = [
𝑲11 𝑲12

𝑲21 𝑲22
] = 𝑘𝜇 [

−𝑸1𝑬h/2
−1 𝑸2𝑬h/2

𝑸1𝑬−h/2
−1 −𝑸2𝑬−h/2

] [
𝑹1𝑬h/2

−1 𝑹2𝑬h/2

𝑹1𝑬−h/2
−1 𝑹2𝑬−h/2

]

−1

, (A22) 

where 𝑲 denotes the dynamic stiffness matrix of a single horizontal homogeneous elastic layer, which is 

a 4 × 4 symmetric matrix dependent on the wavenumber, frequency, thickness, and material parameters 

of the soil layer. 

For the underlying half-space, the displacements and stresses at negative infinity are zero. Thus, its 

stiffness matrix can be obtained as follows: 

𝑲half =
𝑘𝜇(1−𝑠2)

1−𝑝𝑠
[

𝑝 −1
−1 𝑠

] + 2𝑘𝜇 [
0 1
1 0

]. (A23) 

Appendix B 

The equivalent nodal forces in the DRM are presented in this section. As shown in Fig. 3, the discretized 

finite element equations, neglecting the damping terms, of the interior domain 𝛺− and exterior domain 

𝛺+ are as follows: 

[
𝑴ii

𝛺−
𝑴ib

𝛺−

𝑴bi
𝛺−

𝑴bb
𝛺−] [

�̈�i

�̈�b
] + [

𝑲ii
𝛺−

𝑲ib
𝛺−

𝑲bi
𝛺−

𝑲bb
𝛺−] [

𝒖i

𝒖b
] = [

0
𝑭b

]  in 𝛺−, (B1) 

[
𝑴bb

𝛺+
𝑴be

𝛺+

𝑴eb
𝛺+

𝑴ee
𝛺+] [

�̈�b

�̈�e
] + [

𝑲bb
𝛺+

𝑲be
𝛺+

𝑲eb
𝛺+

𝑲ee
𝛺+] [

𝒖b

𝒖e
] = [

−𝑭b

𝑭e
]  in 𝛺+, (B2) 
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where M, K, and F denote the mass matrix, stiffness matrix, and load vector, respectively; �̈� and 𝒖 

denote the acceleration and displacement vectors, respectively; and subscripts i, b, and e refer to the nodes 

in the interior domain, boundary 𝛤, and exterior domain, respectively. Superscripts 𝛺− and 𝛺+ denote 

matrices of elements in either the interior or exterior domain. 

Assuming that the ground in the exterior domain is elastic, the displacement in the exterior domain can 

therefore be expressed by the superposition of displacements of the free field and the residual field as 

follows: 

𝒖e = 𝒖e
f + 𝒘e, (B3) 

where residual field 𝒘e denotes the difference in the response in the exterior domain with respect to 

that of the free field 𝒖e
f , which can be due to scattered waves or soil nonlinearity in the interior domain. It 

should be noted that heterogeneous ground can be incorporated into the stiffness matrix method as stated 

above. Therefore, the residual field 𝒘e is significantly reduced, thereby decreasing the outgoing waves. 

Substituting Eq. (B3) into Eq. (B2) and adding Eq. (B1) yields: 

[

𝑴ii
𝛺−

𝑴ib
𝛺−

0

𝑴bi
𝛺−

𝑴bb
𝛺−

+ 𝑴bb
𝛺+

𝑴be
𝛺+

0 𝑴eb
𝛺+

𝑴ee
𝛺+

] [

�̈�i

�̈�b

�̈�e

] + [

𝑲ii
𝛺−

𝑲ib
𝛺−

0

𝑲bi
𝛺−

𝑲bb
𝛺−

+ 𝑲bb
𝛺+

𝑲be
𝛺+

0 𝑲eb
𝛺+

𝑲ee
𝛺+

] [

𝒖i

𝒖b

𝒘e

] 

= [

0

−𝑴be
𝛺+

�̈�e
f − 𝑲be

𝛺+
𝒖e

f

𝑭e − 𝑴ee
𝛺+

�̈�e
f − 𝑲ee

𝛺+
𝒖e

f

]. (B4) 

The following observation from Eq. (B2) can be considered. 

𝑭e = 𝑴eb
𝛺+

�̈�b
f + 𝑴ee

𝛺+
�̈�e

f + 𝑲eb
𝛺+

𝒖b
f + 𝑲ee

𝛺+
𝒖e

f. (B5) 

Substituting Eq. (B5) into Eq. (B4) yields: 

[

𝑴ii
𝛺−

𝑴ib
𝛺−

0

𝑴bi
𝛺−

𝑴bb
𝛺−

+ 𝑴bb
𝛺+

𝑴be
𝛺+

0 𝑴eb
𝛺+

𝑴ee
𝛺+

] [

�̈�i

�̈�b

�̈�e

] + [

𝑲ii
𝛺−

𝑲ib
𝛺−

0

𝑲bi
𝛺−

𝑲bb
𝛺−

+ 𝑲bb
𝛺+

𝑲be
𝛺+

0 𝑲eb
𝛺+

𝑲ee
𝛺+

] [

𝒖i

𝒖b

𝒘e

] 

= [

0

−𝑴be
𝛺+

�̈�e
f − 𝑲be

𝛺+
𝒖e

f

𝑴eb
𝛺+

�̈�b
f + 𝑲eb

𝛺+
𝒖b

f

]. (B6) 

The left side of Eq. (B6) is identical to that of the sum of Eq. (B1) and Eq. (B2). Hence, the seismic 

excitation in the exterior domain, regardless of its location, is replaced by equivalent nodal forces on the 

right side. The equivalent nodal forces 𝑃b
eff are imposed on the nodes located on boundaries 𝛤 and 𝛤e 

and those enclosed by two boundaries 

[
𝑷b

eff

𝑷e
eff

] = [
−𝑴be

𝛺+
�̈�e

f − 𝑲be
𝛺+

𝒖e
f

𝑴eb
𝛺+

�̈�b
f + 𝑲eb

𝛺+
𝒖b

f
]. (B7) 

It can be observed that the equivalent nodal forces are dependent on the free-field displacements and 

accelerations, location, and material parameters of the elements enclosed by the two boundaries 𝛤 and 𝛤e. 

In the numerical implementation, only a single-element thick layer is considered between the two 

boundaries 𝛤 and 𝛤e for simplicity. This implies that there are no other enclosed nodes, and equivalent 

nodal forces are imposed only on the two boundaries. 


