Appendix for:

Compressive strength prediction and optimization design of

sustainable concrete based on squirrel search algorithm-extreme

gradient boosting technique

Enming LI^a, Ning ZHANG^b, Bin XI^{c*}, Jian ZHOU^d, Xiaofeng GAO^e

^a ETSI Minas y Energía, Universidad Politécnica de Madrid, Madrid 28003, Spain

^b Leibniz Institute of Ecological Urban and Regional Development (IOER), Dresden 01217, Germany

^c Department of Civil and Environmental Engineering, Politecnico Di Milano, Milano 20133, Italy

^d School of Resources and Safety Engineering, Central South University, Changsha 410083, China

^e Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China

*Corresponding author. E-mail: bin.xi@polimi.it

Appendix

algorithm	algorithm parameters	optimal XGB parameters			
		Min_child_weight = 0.7699			
CHOA	none	Learning rate $= 0.4817$			
		Num_trees = 255.3345			
GJO	cl = 1.5, which influences the prey energy $\beta = 1.5$, which is related to Levy function partition coefficient = 3, which influences the position update of	Min_child_weight = 1.4662 Learning rate = 0.2523 Num_trees = 764.8935			
JS	jellyfish coefficient of motion = 0.1, which influences the movement of jellyfish $\eta = 4.0$ which influences the initialization	Min_child_weight = 4.2473 Learning rate = 0.5009 Num_trees = 716.9580			
SCSO	none	Min_child_weight = 0.6996 Learning rate = 0.3242			

Table A Algorithm parameters and optimal parameters of models

 $Num_trees = 285.0761$

	ST = 0.6, i.e., alert value	
SSA	PD = 0.7, i.e., proportion of	Min shild w
	discoverers; rest are the participants	L coming w
	SD = 0.2, i.e., proportion of sparrows	Num troos
	aware of danger	Null_trees

Min_child_weight = 2.5580 Learning rate = 0.3773 Num_trees = 574.2193

pc = 0.7, i.e., cross probability	
pm = 0.3, i.e., mutation probability	

Min_child_weight = 1.7082 Learning rate = 0.3399 Num_trees = 486.6444

Mutual information with 5 nearest neighbors

С		2.857	3.098	2.123	2.096	2.145	2.006	0.7927	0.4076
BS	2.857		3.352	1.732	2.662	2.106	2.166	3.403	0.2356
FA	3.098	3.352	7.869	3.086	3.701	2.902	2.734	4.17	0.1527
W	2.123	1.732	3.086		3.023	2.356	2.064	2.819	0.3257
SP	2.096	2.662	3.701	3.023		1.851	1.823	3.695	0.2023
CAG	2.145	2.106	2.902	2.356	1.851	6.918	2.886	1.806	0.2358
FAG	2.006	2.166	2.734	2.064	1.823	2.886	6.599	0.6263	0.2289
А	0.7927	3.403	4.17	2.819	3.695	1.806	0.6263	9.457	0.3577
CS	0.4076	0.2356	0.1527	0.3257	0.2023	0.2358	0.2289	0.3577	5.478
	С	BS	FA	W	SP	CAG	FAG	А	CS

Fig. A Mutual information of different variables by 5 nearest-neighbors method.

С	1	0.1867	0.3257	0.2524	0.323	0.362	0.1454	0.1261	0.5442
BS	0.1867		0.666	0.2559	0.2977	0.2767	0.3292	0.09942	0.1303
FA	0.3257	0.666		0.1858	0.4001	0.209	0.1857	0.1994	0.1816
W	0.2524	0.2559	0.1858		0.6029	0.3787	0.4317	0.2584	0.3163
SP	0.323	0.2977	0.4001	0.6029		0.2025	0.2521	0.2465	0.3072
CAG	0.362	0.2767	0.209	0.3787	0.2025		0.1968	0.1896	0.1764
FAG	0.1454	0.3292	0.1857	0.4317	0.2521	0.1968		0.1898	0.1267
А	0.1261	0.09942	0.1994	0.2584	0.2465	0.1896	0.1898		0.483
CS	0.5442	0.1303	0.1816	0.3163	0.3072	0.1764	0.1267	0.483	
	С	BS	FA	W	SP	CAG	FAG	А	CS

Distance correlation between different variables

Fig. B Distance correlation between different variables.

GA

Fig. C Comparison of general data distribution of the training set (TR) and testing set (TS).

Fig. D Intuitive display of comprehensive score of five hybrid XGB models.

Fig. E Comparison between predictive values and actual values of the training dataset.

Fig. F Comparison between predictive values and actual values of the testing dataset.