1 |
E Aarts, THA Ederveen, J Naaijen et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 2017a;12:e0183509.
https://doi.org/10.1371/journal.pone.0183509
|
2 |
E Aarts, THA Ederveen, J Naaijen et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 2017b;12:e0183509.
https://doi.org/10.1371/journal.pone.0183509
|
3 |
G Agirman, EY. Hsiao SnapShot: the microbiota-gut-brain axis. Cell 2021;184:2524–2524.e1.
https://doi.org/10.1016/j.cell.2021.03.022
|
4 |
A Agustí, MP García-Pardo, I López-Almela et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci 2018;12:155.
https://doi.org/10.3389/fnins.2018.00155
|
5 |
F Alemi, DP Poole, J Chiu et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145–154.
https://doi.org/10.1053/j.gastro.2012.09.055
|
6 |
American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edn. Washington D.C.: American Psychiatric Association, 2013.
https://doi.org/10.1176/appi.books.9780890425596
|
7 |
T Arentsen, Y Qian, S Gkotzis et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol Psychiatry 2017;22:257–266.
https://doi.org/10.1038/mp.2016.182
|
8 |
P Ashwood, P Krakowiak, I Hertz-Picciotto et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011;25:40–45.
https://doi.org/10.1016/j.bbi.2010.08.003
|
9 |
NW Bellono, JR Bayrer, DB Leitch et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017;170:185–198.e16.
https://doi.org/10.1016/j.cell.2017.05.034
|
10 |
P Bercik, E Denou, J Collins et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141:599–609.e1.
https://doi.org/10.1053/j.gastro.2011.04.052
|
11 |
K Berer, M Mues, M Koutrolos et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011;479:538–541.
https://doi.org/10.1038/nature10554
|
12 |
Y Bhattarai, BB Williams, EJ Battaglioli et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018;23:775–785.e5.
https://doi.org/10.1016/j.chom.2018.05.004
|
13 |
E Biagi, M Candela, M Centanni et al. Gut microbiome in down syndrome. PLoS One 2014;9:e112023.
https://doi.org/10.1371/journal.pone.0112023
|
14 |
DV Bohórquez, RA Shahid, A Erdmann et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 2015;125:782–786.
https://doi.org/10.1172/JCI78361
|
15 |
B Bonaz, T Bazin, S. Pellissier Bhattarai. Front Neurosci 2018;12:49.
https://doi.org/10.3389/fnins.2018.00049
|
16 |
V Bonnefil, K Dietz, M Amatruda et al. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. Elife 2019;8:e40855.
https://doi.org/10.7554/eLife.40855
|
17 |
E Borghi, F Borgo, M Severgnini et al. Rett syndrome: a focus on gut microbiota. Int J Mol Sci 2017;18:344–344.
https://doi.org/10.3390/ijms18020344
|
18 |
D Borgmann, E Ciglieri, N Biglari et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 2021;33:1466–1482.e7.
https://doi.org/10.1016/j.cmet.2021.05.002
|
19 |
F Borgo, M Severgnini, M Savini et al. Rett syndrome: a focus on gut microbiota. IJMS 2017;18:344.
https://doi.org/10.3390/ijms18020344
|
20 |
JA Bravo, P Forsythe, MV Chew et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011a;108:16050–16055.
https://doi.org/10.1073/pnas.1102999108
|
21 |
JA Bravo, P Forsythe, MV Chew et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011b;108:16050–16055.
https://doi.org/10.1073/pnas.1102999108
|
22 |
P Brescia, M. Rescigno The gut vascular barrier: a new player in the gut–liver–brain axis. Trends Mol Med 2021;27:844–855.
https://doi.org/10.1016/j.molmed.2021.06.007
|
23 |
GC Brown, JJ. Neher Microglial phagocytosis of live neurons. Nat Rev Neurosci 2014;15:209–216.
https://doi.org/10.1038/nrn3710
|
24 |
KN Browning, RA. Travagli Central nervous system control of gastro-intestinal motility and secretion and modulation of gastrointestinal functions. In: Terjung R (ed.), Comprehensive Physiology, 1st edn. Wiley, 2014, 1339–1368.
https://doi.org/10.1002/cphy.c130055
|
25 |
JJ Bruckner, SJ Stednitz, MZ Grice et al. The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol 2022;20:e3001838.
https://doi.org/10.1371/journal.pbio.3001838
|
26 |
KL Buchanan, LE Rupprecht, MM Kaelberer et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosci 2022;25:191–200.
https://doi.org/10.1038/s41593-021-00982-7
|
27 |
SA Buffington, GV Di Prisco, TA Auchtung et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016;165:1762–1775.
https://doi.org/10.1016/j.cell.2016.06.001
|
28 |
SA Buffington, SW Dooling, M Sgritta et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021;184:1740–1756.e16.
https://doi.org/10.1016/j.cell.2021.02.009
|
29 |
PM Burnham, DR. Hendrixson Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2018;16:551–565.
https://doi.org/10.1038/s41579-018-0037-9
|
30 |
AP Chambers, DA Sandoval, RJ. Seeley Integration of satiety signals by the central nervous system. Curr Biol 2013;23:R379–R388.
https://doi.org/10.1016/j.cub.2013.03.020
|
31 |
L Chang, Y Wei, K. Hashimoto Brain–gut–microbiota axis in depression: a historical overview and future directions. Brain Res Bull 2022;182:44–56.
https://doi.org/10.1016/j.brainresbull.2022.02.004
|
32 |
PV Chang, L Hao, S Offermanns et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014;111:2247–2252.
https://doi.org/10.1073/pnas.1322269111
|
33 |
A Checa-Ros, A Jeréz-Calero, A Molina-Carballo et al. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients 2021;13:249.
https://doi.org/10.3390/nu13010249
|
34 |
G Chen, X Ran, B Li et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 2018;30:317–325.
https://doi.org/10.1016/j.ebiom.2018.03.030
|
35 |
K Chen, X Luan, Q Liu et al. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host & Microbe 2019;25(4):537–552.e8.
https://doi.org/10.1016/j.chom.2019.02.003
|
36 |
GB Choi, YS Yim, H Wong et al. The maternal interleukin-17a path-way in mice promotes autism-like phenotypes in offspring. Science 2016;351:933–939.
https://doi.org/10.1126/science.aad0314
|
37 |
DC Chugani, O Muzik, M Behen et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999;45:287–295.
https://doi.org/10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9
|
38 |
R Corrêa-Oliveira, JL Fachi, A Vieira et al. Regulation of immune cell function by short-chain fatty acids. Clin Trans Immunol 2016;5:e73.
https://doi.org/10.1038/cti.2016.17
|
39 |
JF Cryan, KJ O’Riordan, CSM Cowan et al. The microbiota-gut-brain axis. Physiol Rev 2019;99:1877–2013.
https://doi.org/10.1152/physrev.00018.2018
|
40 |
CL Cunningham, V Martinez-Cerdeno, SC. Noctor Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013;33:4216–4233.
https://doi.org/10.1523/JNEUROSCI.3441-12.2013
|
41 |
S Cussotto, KV Sandhu, TG Dinan et al. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 2018;51:80–101.
https://doi.org/10.1016/j.yfrne.2018.04.002
|
42 |
B Dalile, L Van Oudenhove, B Vervliet et al. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 2019;16:461–478.
https://doi.org/10.1038/s41575-019-0157-3
|
43 |
ER Davenport, JG Sanders, SJ Song et al. The human microbiome in evolution. BMC Biol 2017;15:127.
https://doi.org/10.1186/s12915-017-0454-7
|
44 |
G Dayanithi, M Cazalis, JJ. Nordmann Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature 1987;325:813–816.
https://doi.org/10.1038/325813a0
|
45 |
CGM de Theije, H Wopereis, M Ramadan et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014;37:197–206.
https://doi.org/10.1016/j.bbi.2013.12.005
|
46 |
KS Dervola, BA Roberg, G Wøien et al. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer- controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD. Behav Brain Funct 2012;8:56.
https://doi.org/10.1186/1744-9081-8-56
|
47 |
TG Dinan, JF. Cryan Brain–gut–microbiota axis — mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol 2017;14:69–70.
https://doi.org/10.1038/nrgastro.2016.200
|
48 |
G Dölen, A Darvishzadeh, KW Huang et al. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013;501:179–184.
https://doi.org/10.1038/nature12518
|
49 |
MH Donovan, LH. Tecott Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013;7:36–36.
https://doi.org/10.3389/fnins.2013.00036
|
50 |
PG Enticott, NJ Rinehart, BJ Tonge et al. A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder: TMS in Austism and Asperger Disorder. Develop Med Child Neurol 2010;52:e179–e183.
https://doi.org/10.1111/j.1469-8749.2010.03665.x
|
51 |
D Erny, N Dokalis, C Mezö et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab 2021;33:2260–2276.e7.
https://doi.org/10.1016/j.cmet.2021.10.010
|
52 |
D Erny, AL Hrabě de Angelis, M. Prinz Communicating systems in the body: how microbiota and microglia cooperate. Immunology 2017;150:7–15.
https://doi.org/10.1111/imm.12645
|
53 |
A. Fasano All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020;9:69.
https://doi.org/10.12688/f1000research.20510.1
|
54 |
A Fattorusso, L Di Genova, G Dell’Isola et al. Autism spectrum disorders and the gut microbiota. Nutrients 2019;11:521.
https://doi.org/10.3390/nu11030521
|
55 |
SK Fineberg, DA. Ross Oxytocin and the social brain. Biol Psychiatry 2017;81:e19–e21.
https://doi.org/10.1016/j.biopsych.2016.11.004
|
56 |
Z Fitzpatrick, G Frazer, A Ferro et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 2020;587:472–476.
https://doi.org/10.1038/s41586-020-2886-4
|
57 |
AP Francis, MG. Dominguez-Bello Early-life microbiota perturbations and behavioral effects. Trends Microbiol 2019;27:567–569.
https://doi.org/10.1016/j.tim.2019.04.004
|
58 |
TC Fung, CA Olson, EY. Hsiao Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–155.
https://doi.org/10.1038/nn.4476
|
59 |
J Gao, J Zou, L Yang et al. Alteration of peripheral cortisol and autism spectrum disorder: a meta-analysis. Front Psychiatry 2022a;13:928188.
https://doi.org/10.3389/fpsyt.2022.928188
|
60 |
X Gao, X Su, X Han et al. Unsaturated fatty acids in mental disorders: an umbrella review of meta-analyses. Adv Nutr 2022b;13:2217–2236.
https://doi.org/10.1093/advances/nmac084
|
61 |
C Garlanda, CA Dinarello, A. Mantovani The Interleukin-1 family: back to the future. Immunity 2013;39:1003–1018.
https://doi.org/10.1016/j.immuni.2013.11.010
|
62 |
R George Kerry, JK Patra, S Gouda et al. Benefaction of probiotics for human health: a review. J Food Drug Anal 2018;26:927–939.
https://doi.org/10.1016/j.jfda.2018.01.002
|
63 |
JA Gilbert, R Krajmalnik-Brown, DL Porazinska et al. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell 2013;155:1446–1448.
https://doi.org/10.1016/j.cell.2013.11.035
|
64 |
LE Goehler, RPA Gaykema, N Opitz et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005;19:334–344.
https://doi.org/10.1016/j.bbi.2004.09.002
|
65 |
A Gonzalez-Santana, R. Diaz Heijtz Bacterial peptidoglycans from microbiota in neurodevelopment and behavior. Trends Mol Med 2020;26:729–743.
https://doi.org/10.1016/j.molmed.2020.05.003
|
66 |
Gray H, Standring S, Anhand N (eds). Gray’s anatomy: the anatomical basis of clinical practice, 42nd edn, Amsterdam: Elsevier, 2021.
|
67 |
FM Gribble, F. Reimann Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 2016;78:277–299.
https://doi.org/10.1146/annurev-physiol-021115-105439
|
68 |
R Grimaldi, GR Gibson, J Vulevic et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018;6:133.
https://doi.org/10.1186/s40168-018-0523-3
|
69 |
VX Han, S Patel, HF Jones et al. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021;17:564–579.
https://doi.org/10.1038/s41582-021-00530-8
|
70 |
S Hang, D Paik, L Yao et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019;576:143–148.
https://doi.org/10.1038/s41586-019-1785-z
|
71 |
HG Hanley, SM Stahl, DX. Freedman Hyperserotonemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 1977;34:521–531.
https://doi.org/10.1001/archpsyc.1977.01770170031002
|
72 |
GJ. Harry Microglia during development and aging. Pharmacol Ther 2013;139:313–326.
https://doi.org/10.1016/j.pharmthera.2013.04.013
|
73 |
LA Hartsough, M Park, MV Kotlajich et al. Optogenetic control of gut bacterial metabolism to promote longevity. Elife 2020;9:e56849.
https://doi.org/10.7554/eLife.56849
|
74 |
M Heinrichs, B von Dawans, G. Domes Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 2009;30:548–557.
https://doi.org/10.1016/j.yfrne.2009.05.005
|
75 |
E Hisle-Gorman, A Susi, T Stokes et al. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr Res 2018;84:190–198.
https://doi.org/10.1038/pr.2018.23
|
76 |
AE Hoban, RM Stilling, FJ Ryan et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016;6:e774.
https://doi.org/10.1038/tp.2016.42
|
77 |
CC Hoogenraad, L. Riol-Blanco Interleukin-17: a social cytokine. Cell 2020;181:517–519.
https://doi.org/10.1016/j.cell.2020.03.060
|
78 |
EY Hsiao, SW McBride, S Hsien et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155:1451–1463.
https://doi.org/10.1016/j.cell.2013.11.024
|
79 |
B Hsueh, R Chen, Y Jo et al. Cardiogenic control of affective behavioural state. Nature 2023.
https://doi.org/10.1038/s41586-023-05748-8
|
80 |
AN Hughes, B. Appel Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci 2020;23:1055–1066.
https://doi.org/10.1038/s41593-020-0654-2
|
81 |
T Ichiki, T Wang, A Kennedy et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 2022;602:468–474.
https://doi.org/10.1038/s41586-021-04359-5
|
82 |
E Isolauri, M Kalliomaki, K Laitinen et al. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. CPD 2008;14:1368–1375.
https://doi.org/10.2174/138161208784480207
|
83 |
H Jiang, Y Zhou, G Zhou et al. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav Brain Res 2018;347:408–413.
https://doi.org/10.1016/j.bbr.2018.03.036
|
84 |
J Jolanta Wasilewska, M. Klukowski Gastrointestinal symptoms and autism spectrum disorder: links and risks – a possible new overlap syndrome. PHMT 2015;153.
https://doi.org/10.2147/PHMT.S85717
|
85 |
MM Kaelberer, KL Buchanan, ME Klein et al. A gut-brain neural circuit for nutrient sensory transduction. Science 2018;361:eaat5236.
https://doi.org/10.1126/science.aat5236
|
86 |
MM Kaelberer, LE Rupprecht, WW Liu et al. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu Rev Neurosci 2020;43:337–353.
https://doi.org/10.1146/annurev-neuro-091619-022657
|
87 |
A Kalenik, K Kardaś, A Rahnama et al. Gut microbiota and probiotic therapy in ADHD: a review of current knowledge. Prog Neuropsychopharmacol Biol Psychiatry 2021;110:110277.
https://doi.org/10.1016/j.pnpbp.2021.110277
|
88 |
D-W Kang, JB Adams, DM Coleman et al. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep 2019;9:5821.
https://doi.org/10.1038/s41598-019-42183-0
|
89 |
M Kidd, BI Gustafsson, I Drozdov et al. IL1β- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil 2009;21:439–450.
https://doi.org/10.1111/j.1365-2982.2008.01210.x
|
90 |
M Kim, G Heo, S-Y. Kim Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022;23:135–156.
https://doi.org/10.1038/s41583-021-00544-7
|
91 |
S Kim, H Kim, YS Yim et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 2017;549:528–532.
https://doi.org/10.1038/nature23910
|
92 |
X-J Kong, J Liu, J Li et al. Probiotics and oxytocin nasal spray as neuro- social-behavioral interventions for patients with autism spectrum disorders: a pilot randomized controlled trial protocol. Pilot Feasibility Stud 2020;6:20.
https://doi.org/10.1186/s40814-020-0557-8
|
93 |
J-P Krieger, M Asker, P van der Velden et al. Neural pathway for gut feelings: vagal interoceptive feedback from the gastrointestinal tract is a critical modulator of anxiety-like behavior. Biol Psychiatry 2022;92:709–721.
https://doi.org/10.1016/j.biopsych.2022.04.020
|
94 |
Z Lai, W Shan, J Li et al. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021;26:7167–7187.
https://doi.org/10.1038/s41380-021-01291-y
|
95 |
A Lavelle, H. Sokol Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:223–237.
https://doi.org/10.1038/s41575-019-0258-z
|
96 |
G Leader, C Abberton, S Cunningham et al. Gastrointestinal symptoms in autism spectrum disorder: a systematic review. Nutrients 2022;14:1471.
https://doi.org/10.3390/nu14071471
|
97 |
M Lh, S Hl, M. Sk The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19.
https://doi.org/10.1038/s41579-020-00460-0
|
98 |
D Li, T Sun, Y Tong et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab 2023;S1550413123000530.
https://doi.org/10.1016/j.cmet.2023.02.017
|
99 |
M Li, H-E Tan, Z Lu et al. Gut–brain circuits for fat preference. Nature 2022a;610:722–730.
https://doi.org/10.1038/s41586-022-05266-z
|
100 |
N Li, H Chen, Y Cheng et al. Fecal microbiota transplantation relieves gastrointestinal and autism symptoms by improving the gut microbiota in an open-label study. Front Cell Infect Microbiol 2021;11:759435.
https://doi.org/10.3389/fcimb.2021.759435
|
101 |
X Li, C Wang, J Zhu et al. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-Mitophagy Pathway. Oxid Med Cell Longevity 2022b;2022:1–23.
https://doi.org/10.1155/2022/3745135
|
102 |
Y Li, H Sun, Y Huang et al. Gut metagenomic characteristics of ADHD reveal low Bacteroides ovatus-associated host cognitive impairment. Gut Microbes 2022c;14:2125747.
https://doi.org/10.1080/19490976.2022.2125747
|
103 |
F Liu, J Li, F Wu et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry 2019;9:43.
https://doi.org/10.1038/s41398-019-0389-6
|
104 |
L Liu, H Wang, X Chen et al. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023;90:104527.
https://doi.org/10.1016/j.ebiom.2023.104527
|
105 |
M Lou, A Cao, C Jin et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut 2021.
https://doi.org/10.1136/gutjnl-2021-325115
|
106 |
J Lu, X Fan, L Lu et al. Limosilactobacillus reuteri normalizes blood–brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023;15:2178800.
https://doi.org/10.1080/19490976.2023.2178800
|
107 |
JR Lukens, UB. Eyo Microglia and neurodevelopmental disorders. Annu Rev Neurosci 2022;45:425–445.
https://doi.org/10.1146/annurev-neuro-110920-023056
|
108 |
M Lyte, J J Varcoe, M T. Bailey Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiology & Behavior 2002;65(1):63–68.
https://doi.org/10.1016/S0031-9384(98)00145-0
|
109 |
A Malik, JM Brudvig, BJ Gadsden et al. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut Microbes 2022;14:2064706.
https://doi.org/10.1080/19490976.2022.2064706
|
110 |
JW Maniscalco, L. Rinaman Vagal interoceptive modulation of motivated behavior. Physiology 2018;33:151–167.
https://doi.org/10.1152/physiol.00036.2017
|
111 |
KG Margolis, JF Cryan, EA. Mayer The microbiota-gut-brain axis: from motility to mood. Gastroenterology 2021;160:1486–1501.
https://doi.org/10.1053/j.gastro.2020.10.066
|
112 |
U. Marklund Diversity, development and immunoregulation of enteric neurons. Nat Rev Gastroenterol Hepatol 2022;19:85–86.
https://doi.org/10.1038/s41575-021-00553-y
|
113 |
KM Maslowski, AT Vieira, A Ng et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282–1286.
https://doi.org/10.1038/nature08530
|
114 |
O Matcovitch-Natan, DR Winter, A Giladi et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016;353:aad8670.
https://doi.org/10.1126/science.aad8670
|
115 |
A Mercado-Perez, A. Beyder Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022;19:283–296.
https://doi.org/10.1038/s41575-021-00561-y
|
116 |
F Mirabella, G Desiato, S Mancinelli et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021;54:2611–2631.e8.
https://doi.org/10.1016/j.immuni.2021.10.006
|
117 |
LH Morais, HL Schreiber, SK. Mazmanian The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19:241–255.
https://doi.org/10.1038/s41579-020-00460-0
|
118 |
O Mossad, B Batut, B Yilmaz et al. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nat Neurosci 2022;25:295–305.
https://doi.org/10.1038/s41593-022-01027-3
|
119 |
TD Müller, B Finan, SR Bloom et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019;30:72–130.
https://doi.org/10.1016/j.molmet.2019.09.010
|
120 |
Y Murakami, Y Imamura, K Saito et al. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: a potential new biological diagnostic marker. Sci Rep 2019;9:13182.
https://doi.org/10.1038/s41598-019-49781-y
|
121 |
BD Needham, MD Adame, G Serena et al. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatry 2021;89:451–462.
https://doi.org/10.1016/j.biopsych.2020.09.025
|
122 |
BD Needham, M Funabashi, MD Adame et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022;602:647–653.
https://doi.org/10.1038/s41586-022-04396-8
|
123 |
K Neier, TE Grant, RL Palmer et al. Sex disparate gut microbiome and metabolome perturbations precede disease progression in a mouse model of Rett syndrome. Commun Biol 2021;4:1408.
https://doi.org/10.1038/s42003-021-02915-3
|
124 |
AD Nemes-Baran, DR White, TM. DeSilva Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep 2020;32:108047.
https://doi.org/10.1016/j.celrep.2020.108047
|
125 |
KM Neufeld, N Kang, J Bienenstock et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice: behavior in germ-free mice. Neurogastroenterol Motil 2011;23:255–e119.
https://doi.org/10.1111/j.1365-2982.2010.01620.x
|
126 |
ID Neumann, DA. Slattery Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 2016;79:213–221.
https://doi.org/10.1016/j.biopsych.2015.06.004
|
127 |
SC Ng, MA Kamm, YK Yeoh et al. Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut 2020;69:83–91.
https://doi.org/10.1136/gutjnl-2019-319407
|
128 |
DN O’Dwyer, RP Dickson, BB. Moore The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 2016;196:4839–4847.
https://doi.org/10.4049/jimmunol.1600279
|
129 |
S Pan, SR Mayoral, HS Choi et al. Preservation of a remote fear memory requires new myelin formation. Nat Neurosci 2020;23:487–499.
https://doi.org/10.1038/s41593-019-0582-1
|
130 |
P Pandiyan, N Bhaskaran, M Zou et al. Microbiome dependent regulation of tregs and Th17 cells in mucosa. Front Immunol 2019;10:426.
https://doi.org/10.3389/fimmu.2019.00426
|
131 |
RC Paolicelli, G Bolasco, F Pagani et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–1458.
https://doi.org/10.1126/science.1202529
|
132 |
JM Parrott, L Redus, JC. O’Connor Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation 2016;13:124.
https://doi.org/10.1186/s12974-016-0590-y
|
133 |
A Pärtty, M Kalliomäki, P Wacklin et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 2015;77:823–828.
https://doi.org/10.1038/pr.2015.51
|
134 |
C Pellegrini, L Antonioli, R Colucci et al. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 2018;136:345–361.
https://doi.org/10.1007/s00401-018-1856-5
|
135 |
HM Poling, D Wu, N Brown et al. Mechanically induced development and maturation of human intestinal organoids in vivo. Nat Biomed Eng 2018;2:429–442.
https://doi.org/10.1038/s41551-018-0243-9
|
136 |
A Prehn-Kristensen, A Zimmermann, L Tittmann et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018a;13:e0200728.
https://doi.org/10.1371/journal.pone.0200728
|
137 |
A Prehn-Kristensen, A Zimmermann, L Tittmann et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018b;13:e0200728.
https://doi.org/10.1371/journal.pone.0200728
|
138 |
GN Pronovost, EY. Hsiao Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 2019;50:18–36.
https://doi.org/10.1016/j.immuni.2018.11.016
|
139 |
C Puricelli, R Rolla, L Gigliotti et al. The gut-brain-immune axis in autism spectrum disorders: a state-of-art report. Front Psychiatry 2022;12:755171.
https://doi.org/10.3389/fpsyt.2021.755171
|
140 |
FJ Quintana, DH. Sherr Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013;65:1148–1161.
https://doi.org/10.1124/pr.113.007823
|
141 |
M Rao, MD. Gershon The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016;13:517–528.
https://doi.org/10.1038/nrgastro.2016.107
|
142 |
CS Reigstad, CE Salmonson, JFR Iii et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015;29:1395–1403.
https://doi.org/10.1096/fj.14-259598
|
143 |
PM. Rodier Vulnerable periods and processes during central nervous system development. Environ Health Perspect 1994;102:121–124.
https://doi.org/10.1289/ehp.94102121
|
144 |
HG Rodrigues, F Takeo Sato, R Curi et al. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 2016;785:50–58.
https://doi.org/10.1016/j.ejphar.2015.03.098
|
145 |
V Rothhammer, DM Borucki, EC Tjon et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018;557:724–728.
https://doi.org/10.1038/s41586-018-0119-x
|
146 |
V Rothhammer, ID Mascanfroni, L Bunse et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016;22:586–597.
https://doi.org/10.1038/nm.4106
|
147 |
LM Sanmarco, MA Wheeler, C Gutiérrez-Vázquez et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 2021;590:473–479.
https://doi.org/10.1038/s41586-020-03116-4
|
148 |
FK Satterstrom, JA Kosmicki, J Wang et al; Autism Sequencing Consortium. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020;180:568–584.e23.
|
149 |
K Sayal, V Prasad, D Daley et al. ADHD in children and young people: prevalence, care pathways, and service provision. Lancet Psychiatry 2018;5:175–186.
https://doi.org/10.1016/S2215-0366(17)30167-0
|
150 |
DP Schafer, EK Lehrman, AG Kautzman et al. Microglia sculpt post-natal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.
https://doi.org/10.1016/j.neuron.2012.03.026
|
151 |
A Schnell, L Huang, M Singer et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 2021;184:6281–6298.e23.
https://doi.org/10.1016/j.cell.2021.11.018
|
152 |
M Sgritta, SW Dooling, SA Buffington et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019a;101:246–259.e6.
https://doi.org/10.1016/j.neuron.2018.11.018
|
153 |
M Sgritta, SW Dooling, SA Buffington et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019b;101:246–259.e6.
https://doi.org/10.1016/j.neuron.2018.11.018
|
154 |
G Sharon, NJ Cruz, D-W Kang et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019;177:1600–1618.e17.
https://doi.org/10.1016/j.cell.2019.05.004
|
155 |
Y Shin Yim, A Park, J Berrios et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 2017;549:482–487.
https://doi.org/10.1038/nature23909
|
156 |
AP Shoubridge, JM Choo, AM Martin et al. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022;27:1908–1919.
https://doi.org/10.1038/s41380-022-01479-w
|
157 |
E Skott, LL Yang, M Stiernborg et al. Effects of a synbiotic on symptoms, and daily functioning in attention deficit hyperactivity disorder – a double-blind randomized controlled trial. Brain Behav Immun 2020;89:9–19.
https://doi.org/10.1016/j.bbi.2020.05.056
|
158 |
RE Steinert, C Feinle-Bisset, L Asarian et al. Ghrelin, CCK, GLP-1, and PYY(3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev 2017;97:411–463.
https://doi.org/10.1152/physrev.00031.2014
|
159 |
MAC Stephens, G. Wand Stress and the HPA axis. Alcohol Res 2012;34:468–483.
|
160 |
AJ Stevens, RV Purcell, KA Darling et al. Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder. Sci Rep 2019;9:10128.
https://doi.org/10.1038/s41598-019-46146-3
|
161 |
F Strati, D Cavalieri, D Albanese et al. Altered gut microbiota in Rett syndrome. Microbiome 2016;4:41.
https://doi.org/10.1186/s40168-016-0185-y
|
162 |
Y Taché, W Vale, J Rivier et al. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sci USA 1980;77:5515–5519.
https://doi.org/10.1073/pnas.77.9.5515
|
163 |
AC Tengeler, SA Dam, M Wiesmann et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 2020;8:44.
https://doi.org/10.1186/s40168-020-00816-x
|
164 |
TC Theoharides, S Asadi, AB. Patel Focal brain inflammation and autism. J Neuroinflammation 2013;10:815.
https://doi.org/10.1186/1742-2094-10-46
|
165 |
B Trost, B Thiruvahindrapuram, AJS Chan et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022;185:4409–4427.e18.
|
166 |
T Uesaka, HM Young, V Pachnis et al. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016;417:158–167.
https://doi.org/10.1016/j.ydbio.2016.04.016
|
167 |
A Veerakumar, AR Yung, Y Liu et al. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 2022;606:739–746.
https://doi.org/10.1038/s41586-022-04760-8
|
168 |
NJ. Vickers Animal communication: When I’m Calling You, Will You Answer Too? Curr Biol 2017;27:R713–R715.
https://doi.org/10.1016/j.cub.2017.05.064
|
169 |
HE Vuong, JM Yano, TC Fung et al. The microbiome and host behavior. Annu Rev Neurosci 2017;40:21–49.
https://doi.org/10.1146/annurev-neuro-072116-031347
|
170 |
Y Wan, T Zuo, Z Xu et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 2022;71:910–918.
https://doi.org/10.1136/gutjnl-2020-324015
|
171 |
L-J Wang, C-Y Yang, W-J Chou et al. Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2020;29:287–297.
https://doi.org/10.1007/s00787-019-01352-2
|
172 |
EK Williams, RB Chang, DE Strochlic et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 2016;166:209–221.
https://doi.org/10.1016/j.cell.2016.05.011
|
173 |
HR Willsey, AJ Willsey, B Wang et al. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022;23:323–341.
https://doi.org/10.1038/s41583-022-00576-7
|
174 |
JMW Wong, R de Souza, CWC Kendall et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235–243.
https://doi.org/10.1097/00004836-200603000-00015
|
175 |
V Woo, T. Alenghat Epigenetic regulation by gut microbiota. Gut Microbes 2022.
https://doi.org/10.1080/19490976.2021.2022407
|
176 |
W-L Wu, MD Adame, C-W Liou et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 2021;595:409–414.
https://doi.org/10.1038/s41586-021-03669-y
|
177 |
C X Ya, A K Henders, G A Alvares et al. Interactions between the lipidome and genetic and environmental factors in autism. Nature Medicine 2023;29(4):936–949.
https://doi.org/10.1038/s41591-023-02271-1
|
178 |
Y Yan, W Jiang, T Spinetti et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 2013;38:1154–1163.
https://doi.org/10.1016/j.immuni.2013.05.015
|
179 |
JM Yano, K Yu, GP Donaldson et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–276.
https://doi.org/10.1016/j.cell.2015.02.047
|
180 |
CX Yap, AK Henders, GA Alvares et al. 1.3 Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021;184:5916–5931.e17.
https://doi.org/10.1016/j.cell.2021.10.015
|
181 |
FM Yavitt, BE Kirkpatrick, MR Blatchley et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci Adv 2023;9:eadd5668.
https://doi.org/10.1126/sciadv.add5668
|
182 |
Y Yu, B Zhang, P Ji et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/− mouse model of ASD-like behavior. Nat Commun 2022;13:1151.
https://doi.org/10.1038/s41467-022-28746-2
|
183 |
B Yuan, M Wang, X Wu et al. Identification of de novo mutations in the Chinese Autism Spectrum Disorder cohort via whole-exome sequencing unveils brain regions implicated in autism. Neurosci Bull 2023.
https://doi.org/10.21203/rs.3.rs-729083/v2
|
184 |
KE Zengeler, JR. Lukens Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021;21:454–468.
https://doi.org/10.1038/s41577-020-00487-7
|
185 |
L Zheng, CJ Kelly, KD Battista et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor–dependent repression of Claudin-2. J Immunol 2017;199:2976–2984.
https://doi.org/10.4049/jimmunol.1700105
|
186 |
Y Zheng, MK Bek, NZ Prince et al. The role of bacterial-derived aromatic amino acids metabolites relevant in autism spectrum disorders: a comprehensive review. Front Neurosci 2021;15:738220.
https://doi.org/10.3389/fnins.2021.738220
|