Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2023, Vol. 14 Issue (10): 762-775   https://doi.org/10.1093/procel/pwad026
  本期目录
The microbiota–gut–brain axis and neurodevelopmental disorders
Qinwen Wang1,2, Qianyue Yang1,2, Xingyin Liu1,2,3,4()
1. State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
2. Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
3. The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
4. Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
 全文: PDF(1447 KB)  
Abstract

The gut microbiota has been found to interact with the brain through the microbiota–gut–brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota–gut–brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.

Key wordsneurodevelopmental disorders    gut microbiome    microbiota    gut    brain axis
收稿日期: 2023-03-26      出版日期: 2023-11-16
Corresponding Author(s): Xingyin Liu   
 引用本文:   
. [J]. Protein & Cell, 2023, 14(10): 762-775.
Qinwen Wang, Qianyue Yang, Xingyin Liu. The microbiota–gut–brain axis and neurodevelopmental disorders. Protein Cell, 2023, 14(10): 762-775.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1093/procel/pwad026
https://academic.hep.com.cn/pac/CN/Y2023/V14/I10/762
1 E Aarts, THA Ederveen, J Naaijen et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 2017a;12:e0183509.
https://doi.org/10.1371/journal.pone.0183509
2 E Aarts, THA Ederveen, J Naaijen et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 2017b;12:e0183509.
https://doi.org/10.1371/journal.pone.0183509
3 G Agirman, EY. Hsiao SnapShot: the microbiota-gut-brain axis. Cell 2021;184:2524–2524.e1.
https://doi.org/10.1016/j.cell.2021.03.022
4 A Agustí, MP García-Pardo, I López-Almela et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci 2018;12:155.
https://doi.org/10.3389/fnins.2018.00155
5 F Alemi, DP Poole, J Chiu et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145–154.
https://doi.org/10.1053/j.gastro.2012.09.055
6 American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edn. Washington D.C.: American Psychiatric Association, 2013.
https://doi.org/10.1176/appi.books.9780890425596
7 T Arentsen, Y Qian, S Gkotzis et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol Psychiatry 2017;22:257–266.
https://doi.org/10.1038/mp.2016.182
8 P Ashwood, P Krakowiak, I Hertz-Picciotto et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011;25:40–45.
https://doi.org/10.1016/j.bbi.2010.08.003
9 NW Bellono, JR Bayrer, DB Leitch et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017;170:185–198.e16.
https://doi.org/10.1016/j.cell.2017.05.034
10 P Bercik, E Denou, J Collins et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141:599–609.e1.
https://doi.org/10.1053/j.gastro.2011.04.052
11 K Berer, M Mues, M Koutrolos et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011;479:538–541.
https://doi.org/10.1038/nature10554
12 Y Bhattarai, BB Williams, EJ Battaglioli et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018;23:775–785.e5.
https://doi.org/10.1016/j.chom.2018.05.004
13 E Biagi, M Candela, M Centanni et al. Gut microbiome in down syndrome. PLoS One 2014;9:e112023.
https://doi.org/10.1371/journal.pone.0112023
14 DV Bohórquez, RA Shahid, A Erdmann et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 2015;125:782–786.
https://doi.org/10.1172/JCI78361
15 B Bonaz, T Bazin, S. Pellissier Bhattarai. Front Neurosci 2018;12:49.
https://doi.org/10.3389/fnins.2018.00049
16 V Bonnefil, K Dietz, M Amatruda et al. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. Elife 2019;8:e40855.
https://doi.org/10.7554/eLife.40855
17 E Borghi, F Borgo, M Severgnini et al. Rett syndrome: a focus on gut microbiota. Int J Mol Sci 2017;18:344–344.
https://doi.org/10.3390/ijms18020344
18 D Borgmann, E Ciglieri, N Biglari et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 2021;33:1466–1482.e7.
https://doi.org/10.1016/j.cmet.2021.05.002
19 F Borgo, M Severgnini, M Savini et al. Rett syndrome: a focus on gut microbiota. IJMS 2017;18:344.
https://doi.org/10.3390/ijms18020344
20 JA Bravo, P Forsythe, MV Chew et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011a;108:16050–16055.
https://doi.org/10.1073/pnas.1102999108
21 JA Bravo, P Forsythe, MV Chew et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011b;108:16050–16055.
https://doi.org/10.1073/pnas.1102999108
22 P Brescia, M. Rescigno The gut vascular barrier: a new player in the gut–liver–brain axis. Trends Mol Med 2021;27:844–855.
https://doi.org/10.1016/j.molmed.2021.06.007
23 GC Brown, JJ. Neher Microglial phagocytosis of live neurons. Nat Rev Neurosci 2014;15:209–216.
https://doi.org/10.1038/nrn3710
24 KN Browning, RA. Travagli Central nervous system control of gastro-intestinal motility and secretion and modulation of gastrointestinal functions. In: Terjung R (ed.), Comprehensive Physiology, 1st edn. Wiley, 2014, 1339–1368.
https://doi.org/10.1002/cphy.c130055
25 JJ Bruckner, SJ Stednitz, MZ Grice et al. The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol 2022;20:e3001838.
https://doi.org/10.1371/journal.pbio.3001838
26 KL Buchanan, LE Rupprecht, MM Kaelberer et al. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosci 2022;25:191–200.
https://doi.org/10.1038/s41593-021-00982-7
27 SA Buffington, GV Di Prisco, TA Auchtung et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016;165:1762–1775.
https://doi.org/10.1016/j.cell.2016.06.001
28 SA Buffington, SW Dooling, M Sgritta et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021;184:1740–1756.e16.
https://doi.org/10.1016/j.cell.2021.02.009
29 PM Burnham, DR. Hendrixson Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2018;16:551–565.
https://doi.org/10.1038/s41579-018-0037-9
30 AP Chambers, DA Sandoval, RJ. Seeley Integration of satiety signals by the central nervous system. Curr Biol 2013;23:R379–R388.
https://doi.org/10.1016/j.cub.2013.03.020
31 L Chang, Y Wei, K. Hashimoto Brain–gut–microbiota axis in depression: a historical overview and future directions. Brain Res Bull 2022;182:44–56.
https://doi.org/10.1016/j.brainresbull.2022.02.004
32 PV Chang, L Hao, S Offermanns et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014;111:2247–2252.
https://doi.org/10.1073/pnas.1322269111
33 A Checa-Ros, A Jeréz-Calero, A Molina-Carballo et al. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients 2021;13:249.
https://doi.org/10.3390/nu13010249
34 G Chen, X Ran, B Li et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 2018;30:317–325.
https://doi.org/10.1016/j.ebiom.2018.03.030
35 K Chen, X Luan, Q Liu et al. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host & Microbe 2019;25(4):537–552.e8.
https://doi.org/10.1016/j.chom.2019.02.003
36 GB Choi, YS Yim, H Wong et al. The maternal interleukin-17a path-way in mice promotes autism-like phenotypes in offspring. Science 2016;351:933–939.
https://doi.org/10.1126/science.aad0314
37 DC Chugani, O Muzik, M Behen et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999;45:287–295.
https://doi.org/10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9
38 R Corrêa-Oliveira, JL Fachi, A Vieira et al. Regulation of immune cell function by short-chain fatty acids. Clin Trans Immunol 2016;5:e73.
https://doi.org/10.1038/cti.2016.17
39 JF Cryan, KJ O’Riordan, CSM Cowan et al. The microbiota-gut-brain axis. Physiol Rev 2019;99:1877–2013.
https://doi.org/10.1152/physrev.00018.2018
40 CL Cunningham, V Martinez-Cerdeno, SC. Noctor Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013;33:4216–4233.
https://doi.org/10.1523/JNEUROSCI.3441-12.2013
41 S Cussotto, KV Sandhu, TG Dinan et al. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 2018;51:80–101.
https://doi.org/10.1016/j.yfrne.2018.04.002
42 B Dalile, L Van Oudenhove, B Vervliet et al. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 2019;16:461–478.
https://doi.org/10.1038/s41575-019-0157-3
43 ER Davenport, JG Sanders, SJ Song et al. The human microbiome in evolution. BMC Biol 2017;15:127.
https://doi.org/10.1186/s12915-017-0454-7
44 G Dayanithi, M Cazalis, JJ. Nordmann Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature 1987;325:813–816.
https://doi.org/10.1038/325813a0
45 CGM de Theije, H Wopereis, M Ramadan et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014;37:197–206.
https://doi.org/10.1016/j.bbi.2013.12.005
46 KS Dervola, BA Roberg, G Wøien et al. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer- controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD. Behav Brain Funct 2012;8:56.
https://doi.org/10.1186/1744-9081-8-56
47 TG Dinan, JF. Cryan Brain–gut–microbiota axis — mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol 2017;14:69–70.
https://doi.org/10.1038/nrgastro.2016.200
48 G Dölen, A Darvishzadeh, KW Huang et al. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013;501:179–184.
https://doi.org/10.1038/nature12518
49 MH Donovan, LH. Tecott Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013;7:36–36.
https://doi.org/10.3389/fnins.2013.00036
50 PG Enticott, NJ Rinehart, BJ Tonge et al. A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder: TMS in Austism and Asperger Disorder. Develop Med Child Neurol 2010;52:e179–e183.
https://doi.org/10.1111/j.1469-8749.2010.03665.x
51 D Erny, N Dokalis, C Mezö et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab 2021;33:2260–2276.e7.
https://doi.org/10.1016/j.cmet.2021.10.010
52 D Erny, AL Hrabě de Angelis, M. Prinz Communicating systems in the body: how microbiota and microglia cooperate. Immunology 2017;150:7–15.
https://doi.org/10.1111/imm.12645
53 A. Fasano All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020;9:69.
https://doi.org/10.12688/f1000research.20510.1
54 A Fattorusso, L Di Genova, G Dell’Isola et al. Autism spectrum disorders and the gut microbiota. Nutrients 2019;11:521.
https://doi.org/10.3390/nu11030521
55 SK Fineberg, DA. Ross Oxytocin and the social brain. Biol Psychiatry 2017;81:e19–e21.
https://doi.org/10.1016/j.biopsych.2016.11.004
56 Z Fitzpatrick, G Frazer, A Ferro et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 2020;587:472–476.
https://doi.org/10.1038/s41586-020-2886-4
57 AP Francis, MG. Dominguez-Bello Early-life microbiota perturbations and behavioral effects. Trends Microbiol 2019;27:567–569.
https://doi.org/10.1016/j.tim.2019.04.004
58 TC Fung, CA Olson, EY. Hsiao Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–155.
https://doi.org/10.1038/nn.4476
59 J Gao, J Zou, L Yang et al. Alteration of peripheral cortisol and autism spectrum disorder: a meta-analysis. Front Psychiatry 2022a;13:928188.
https://doi.org/10.3389/fpsyt.2022.928188
60 X Gao, X Su, X Han et al. Unsaturated fatty acids in mental disorders: an umbrella review of meta-analyses. Adv Nutr 2022b;13:2217–2236.
https://doi.org/10.1093/advances/nmac084
61 C Garlanda, CA Dinarello, A. Mantovani The Interleukin-1 family: back to the future. Immunity 2013;39:1003–1018.
https://doi.org/10.1016/j.immuni.2013.11.010
62 R George Kerry, JK Patra, S Gouda et al. Benefaction of probiotics for human health: a review. J Food Drug Anal 2018;26:927–939.
https://doi.org/10.1016/j.jfda.2018.01.002
63 JA Gilbert, R Krajmalnik-Brown, DL Porazinska et al. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell 2013;155:1446–1448.
https://doi.org/10.1016/j.cell.2013.11.035
64 LE Goehler, RPA Gaykema, N Opitz et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005;19:334–344.
https://doi.org/10.1016/j.bbi.2004.09.002
65 A Gonzalez-Santana, R. Diaz Heijtz Bacterial peptidoglycans from microbiota in neurodevelopment and behavior. Trends Mol Med 2020;26:729–743.
https://doi.org/10.1016/j.molmed.2020.05.003
66 Gray H, Standring S, Anhand N (eds). Gray’s anatomy: the anatomical basis of clinical practice, 42nd edn, Amsterdam: Elsevier, 2021.
67 FM Gribble, F. Reimann Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 2016;78:277–299.
https://doi.org/10.1146/annurev-physiol-021115-105439
68 R Grimaldi, GR Gibson, J Vulevic et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018;6:133.
https://doi.org/10.1186/s40168-018-0523-3
69 VX Han, S Patel, HF Jones et al. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021;17:564–579.
https://doi.org/10.1038/s41582-021-00530-8
70 S Hang, D Paik, L Yao et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019;576:143–148.
https://doi.org/10.1038/s41586-019-1785-z
71 HG Hanley, SM Stahl, DX. Freedman Hyperserotonemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 1977;34:521–531.
https://doi.org/10.1001/archpsyc.1977.01770170031002
72 GJ. Harry Microglia during development and aging. Pharmacol Ther 2013;139:313–326.
https://doi.org/10.1016/j.pharmthera.2013.04.013
73 LA Hartsough, M Park, MV Kotlajich et al. Optogenetic control of gut bacterial metabolism to promote longevity. Elife 2020;9:e56849.
https://doi.org/10.7554/eLife.56849
74 M Heinrichs, B von Dawans, G. Domes Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 2009;30:548–557.
https://doi.org/10.1016/j.yfrne.2009.05.005
75 E Hisle-Gorman, A Susi, T Stokes et al. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr Res 2018;84:190–198.
https://doi.org/10.1038/pr.2018.23
76 AE Hoban, RM Stilling, FJ Ryan et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016;6:e774.
https://doi.org/10.1038/tp.2016.42
77 CC Hoogenraad, L. Riol-Blanco Interleukin-17: a social cytokine. Cell 2020;181:517–519.
https://doi.org/10.1016/j.cell.2020.03.060
78 EY Hsiao, SW McBride, S Hsien et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155:1451–1463.
https://doi.org/10.1016/j.cell.2013.11.024
79 B Hsueh, R Chen, Y Jo et al. Cardiogenic control of affective behavioural state. Nature 2023.
https://doi.org/10.1038/s41586-023-05748-8
80 AN Hughes, B. Appel Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci 2020;23:1055–1066.
https://doi.org/10.1038/s41593-020-0654-2
81 T Ichiki, T Wang, A Kennedy et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 2022;602:468–474.
https://doi.org/10.1038/s41586-021-04359-5
82 E Isolauri, M Kalliomaki, K Laitinen et al. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. CPD 2008;14:1368–1375.
https://doi.org/10.2174/138161208784480207
83 H Jiang, Y Zhou, G Zhou et al. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav Brain Res 2018;347:408–413.
https://doi.org/10.1016/j.bbr.2018.03.036
84 J Jolanta Wasilewska, M. Klukowski Gastrointestinal symptoms and autism spectrum disorder: links and risks – a possible new overlap syndrome. PHMT 2015;153.
https://doi.org/10.2147/PHMT.S85717
85 MM Kaelberer, KL Buchanan, ME Klein et al. A gut-brain neural circuit for nutrient sensory transduction. Science 2018;361:eaat5236.
https://doi.org/10.1126/science.aat5236
86 MM Kaelberer, LE Rupprecht, WW Liu et al. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu Rev Neurosci 2020;43:337–353.
https://doi.org/10.1146/annurev-neuro-091619-022657
87 A Kalenik, K Kardaś, A Rahnama et al. Gut microbiota and probiotic therapy in ADHD: a review of current knowledge. Prog Neuropsychopharmacol Biol Psychiatry 2021;110:110277.
https://doi.org/10.1016/j.pnpbp.2021.110277
88 D-W Kang, JB Adams, DM Coleman et al. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep 2019;9:5821.
https://doi.org/10.1038/s41598-019-42183-0
89 M Kidd, BI Gustafsson, I Drozdov et al. IL1β- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil 2009;21:439–450.
https://doi.org/10.1111/j.1365-2982.2008.01210.x
90 M Kim, G Heo, S-Y. Kim Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022;23:135–156.
https://doi.org/10.1038/s41583-021-00544-7
91 S Kim, H Kim, YS Yim et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 2017;549:528–532.
https://doi.org/10.1038/nature23910
92 X-J Kong, J Liu, J Li et al. Probiotics and oxytocin nasal spray as neuro- social-behavioral interventions for patients with autism spectrum disorders: a pilot randomized controlled trial protocol. Pilot Feasibility Stud 2020;6:20.
https://doi.org/10.1186/s40814-020-0557-8
93 J-P Krieger, M Asker, P van der Velden et al. Neural pathway for gut feelings: vagal interoceptive feedback from the gastrointestinal tract is a critical modulator of anxiety-like behavior. Biol Psychiatry 2022;92:709–721.
https://doi.org/10.1016/j.biopsych.2022.04.020
94 Z Lai, W Shan, J Li et al. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021;26:7167–7187.
https://doi.org/10.1038/s41380-021-01291-y
95 A Lavelle, H. Sokol Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:223–237.
https://doi.org/10.1038/s41575-019-0258-z
96 G Leader, C Abberton, S Cunningham et al. Gastrointestinal symptoms in autism spectrum disorder: a systematic review. Nutrients 2022;14:1471.
https://doi.org/10.3390/nu14071471
97 M Lh, S Hl, M. Sk The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19.
https://doi.org/10.1038/s41579-020-00460-0
98 D Li, T Sun, Y Tong et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab 2023;S1550413123000530.
https://doi.org/10.1016/j.cmet.2023.02.017
99 M Li, H-E Tan, Z Lu et al. Gut–brain circuits for fat preference. Nature 2022a;610:722–730.
https://doi.org/10.1038/s41586-022-05266-z
100 N Li, H Chen, Y Cheng et al. Fecal microbiota transplantation relieves gastrointestinal and autism symptoms by improving the gut microbiota in an open-label study. Front Cell Infect Microbiol 2021;11:759435.
https://doi.org/10.3389/fcimb.2021.759435
101 X Li, C Wang, J Zhu et al. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-Mitophagy Pathway. Oxid Med Cell Longevity 2022b;2022:1–23.
https://doi.org/10.1155/2022/3745135
102 Y Li, H Sun, Y Huang et al. Gut metagenomic characteristics of ADHD reveal low Bacteroides ovatus-associated host cognitive impairment. Gut Microbes 2022c;14:2125747.
https://doi.org/10.1080/19490976.2022.2125747
103 F Liu, J Li, F Wu et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry 2019;9:43.
https://doi.org/10.1038/s41398-019-0389-6
104 L Liu, H Wang, X Chen et al. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023;90:104527.
https://doi.org/10.1016/j.ebiom.2023.104527
105 M Lou, A Cao, C Jin et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut 2021.
https://doi.org/10.1136/gutjnl-2021-325115
106 J Lu, X Fan, L Lu et al. Limosilactobacillus reuteri normalizes blood–brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023;15:2178800.
https://doi.org/10.1080/19490976.2023.2178800
107 JR Lukens, UB. Eyo Microglia and neurodevelopmental disorders. Annu Rev Neurosci 2022;45:425–445.
https://doi.org/10.1146/annurev-neuro-110920-023056
108 M Lyte, J J Varcoe, M T. Bailey Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiology & Behavior 2002;65(1):63–68.
https://doi.org/10.1016/S0031-9384(98)00145-0
109 A Malik, JM Brudvig, BJ Gadsden et al. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut Microbes 2022;14:2064706.
https://doi.org/10.1080/19490976.2022.2064706
110 JW Maniscalco, L. Rinaman Vagal interoceptive modulation of motivated behavior. Physiology 2018;33:151–167.
https://doi.org/10.1152/physiol.00036.2017
111 KG Margolis, JF Cryan, EA. Mayer The microbiota-gut-brain axis: from motility to mood. Gastroenterology 2021;160:1486–1501.
https://doi.org/10.1053/j.gastro.2020.10.066
112 U. Marklund Diversity, development and immunoregulation of enteric neurons. Nat Rev Gastroenterol Hepatol 2022;19:85–86.
https://doi.org/10.1038/s41575-021-00553-y
113 KM Maslowski, AT Vieira, A Ng et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282–1286.
https://doi.org/10.1038/nature08530
114 O Matcovitch-Natan, DR Winter, A Giladi et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016;353:aad8670.
https://doi.org/10.1126/science.aad8670
115 A Mercado-Perez, A. Beyder Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022;19:283–296.
https://doi.org/10.1038/s41575-021-00561-y
116 F Mirabella, G Desiato, S Mancinelli et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021;54:2611–2631.e8.
https://doi.org/10.1016/j.immuni.2021.10.006
117 LH Morais, HL Schreiber, SK. Mazmanian The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19:241–255.
https://doi.org/10.1038/s41579-020-00460-0
118 O Mossad, B Batut, B Yilmaz et al. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nat Neurosci 2022;25:295–305.
https://doi.org/10.1038/s41593-022-01027-3
119 TD Müller, B Finan, SR Bloom et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019;30:72–130.
https://doi.org/10.1016/j.molmet.2019.09.010
120 Y Murakami, Y Imamura, K Saito et al. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: a potential new biological diagnostic marker. Sci Rep 2019;9:13182.
https://doi.org/10.1038/s41598-019-49781-y
121 BD Needham, MD Adame, G Serena et al. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatry 2021;89:451–462.
https://doi.org/10.1016/j.biopsych.2020.09.025
122 BD Needham, M Funabashi, MD Adame et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022;602:647–653.
https://doi.org/10.1038/s41586-022-04396-8
123 K Neier, TE Grant, RL Palmer et al. Sex disparate gut microbiome and metabolome perturbations precede disease progression in a mouse model of Rett syndrome. Commun Biol 2021;4:1408.
https://doi.org/10.1038/s42003-021-02915-3
124 AD Nemes-Baran, DR White, TM. DeSilva Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep 2020;32:108047.
https://doi.org/10.1016/j.celrep.2020.108047
125 KM Neufeld, N Kang, J Bienenstock et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice: behavior in germ-free mice. Neurogastroenterol Motil 2011;23:255–e119.
https://doi.org/10.1111/j.1365-2982.2010.01620.x
126 ID Neumann, DA. Slattery Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 2016;79:213–221.
https://doi.org/10.1016/j.biopsych.2015.06.004
127 SC Ng, MA Kamm, YK Yeoh et al. Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut 2020;69:83–91.
https://doi.org/10.1136/gutjnl-2019-319407
128 DN O’Dwyer, RP Dickson, BB. Moore The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 2016;196:4839–4847.
https://doi.org/10.4049/jimmunol.1600279
129 S Pan, SR Mayoral, HS Choi et al. Preservation of a remote fear memory requires new myelin formation. Nat Neurosci 2020;23:487–499.
https://doi.org/10.1038/s41593-019-0582-1
130 P Pandiyan, N Bhaskaran, M Zou et al. Microbiome dependent regulation of tregs and Th17 cells in mucosa. Front Immunol 2019;10:426.
https://doi.org/10.3389/fimmu.2019.00426
131 RC Paolicelli, G Bolasco, F Pagani et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–1458.
https://doi.org/10.1126/science.1202529
132 JM Parrott, L Redus, JC. O’Connor Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation 2016;13:124.
https://doi.org/10.1186/s12974-016-0590-y
133 A Pärtty, M Kalliomäki, P Wacklin et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 2015;77:823–828.
https://doi.org/10.1038/pr.2015.51
134 C Pellegrini, L Antonioli, R Colucci et al. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 2018;136:345–361.
https://doi.org/10.1007/s00401-018-1856-5
135 HM Poling, D Wu, N Brown et al. Mechanically induced development and maturation of human intestinal organoids in vivo. Nat Biomed Eng 2018;2:429–442.
https://doi.org/10.1038/s41551-018-0243-9
136 A Prehn-Kristensen, A Zimmermann, L Tittmann et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018a;13:e0200728.
https://doi.org/10.1371/journal.pone.0200728
137 A Prehn-Kristensen, A Zimmermann, L Tittmann et al. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018b;13:e0200728.
https://doi.org/10.1371/journal.pone.0200728
138 GN Pronovost, EY. Hsiao Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 2019;50:18–36.
https://doi.org/10.1016/j.immuni.2018.11.016
139 C Puricelli, R Rolla, L Gigliotti et al. The gut-brain-immune axis in autism spectrum disorders: a state-of-art report. Front Psychiatry 2022;12:755171.
https://doi.org/10.3389/fpsyt.2021.755171
140 FJ Quintana, DH. Sherr Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013;65:1148–1161.
https://doi.org/10.1124/pr.113.007823
141 M Rao, MD. Gershon The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016;13:517–528.
https://doi.org/10.1038/nrgastro.2016.107
142 CS Reigstad, CE Salmonson, JFR Iii et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015;29:1395–1403.
https://doi.org/10.1096/fj.14-259598
143 PM. Rodier Vulnerable periods and processes during central nervous system development. Environ Health Perspect 1994;102:121–124.
https://doi.org/10.1289/ehp.94102121
144 HG Rodrigues, F Takeo Sato, R Curi et al. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 2016;785:50–58.
https://doi.org/10.1016/j.ejphar.2015.03.098
145 V Rothhammer, DM Borucki, EC Tjon et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018;557:724–728.
https://doi.org/10.1038/s41586-018-0119-x
146 V Rothhammer, ID Mascanfroni, L Bunse et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016;22:586–597.
https://doi.org/10.1038/nm.4106
147 LM Sanmarco, MA Wheeler, C Gutiérrez-Vázquez et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 2021;590:473–479.
https://doi.org/10.1038/s41586-020-03116-4
148 FK Satterstrom, JA Kosmicki, J Wang et al; Autism Sequencing Consortium. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020;180:568–584.e23.
149 K Sayal, V Prasad, D Daley et al. ADHD in children and young people: prevalence, care pathways, and service provision. Lancet Psychiatry 2018;5:175–186.
https://doi.org/10.1016/S2215-0366(17)30167-0
150 DP Schafer, EK Lehrman, AG Kautzman et al. Microglia sculpt post-natal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.
https://doi.org/10.1016/j.neuron.2012.03.026
151 A Schnell, L Huang, M Singer et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 2021;184:6281–6298.e23.
https://doi.org/10.1016/j.cell.2021.11.018
152 M Sgritta, SW Dooling, SA Buffington et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019a;101:246–259.e6.
https://doi.org/10.1016/j.neuron.2018.11.018
153 M Sgritta, SW Dooling, SA Buffington et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019b;101:246–259.e6.
https://doi.org/10.1016/j.neuron.2018.11.018
154 G Sharon, NJ Cruz, D-W Kang et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019;177:1600–1618.e17.
https://doi.org/10.1016/j.cell.2019.05.004
155 Y Shin Yim, A Park, J Berrios et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 2017;549:482–487.
https://doi.org/10.1038/nature23909
156 AP Shoubridge, JM Choo, AM Martin et al. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022;27:1908–1919.
https://doi.org/10.1038/s41380-022-01479-w
157 E Skott, LL Yang, M Stiernborg et al. Effects of a synbiotic on symptoms, and daily functioning in attention deficit hyperactivity disorder – a double-blind randomized controlled trial. Brain Behav Immun 2020;89:9–19.
https://doi.org/10.1016/j.bbi.2020.05.056
158 RE Steinert, C Feinle-Bisset, L Asarian et al. Ghrelin, CCK, GLP-1, and PYY(3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev 2017;97:411–463.
https://doi.org/10.1152/physrev.00031.2014
159 MAC Stephens, G. Wand Stress and the HPA axis. Alcohol Res 2012;34:468–483.
160 AJ Stevens, RV Purcell, KA Darling et al. Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder. Sci Rep 2019;9:10128.
https://doi.org/10.1038/s41598-019-46146-3
161 F Strati, D Cavalieri, D Albanese et al. Altered gut microbiota in Rett syndrome. Microbiome 2016;4:41.
https://doi.org/10.1186/s40168-016-0185-y
162 Y Taché, W Vale, J Rivier et al. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sci USA 1980;77:5515–5519.
https://doi.org/10.1073/pnas.77.9.5515
163 AC Tengeler, SA Dam, M Wiesmann et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 2020;8:44.
https://doi.org/10.1186/s40168-020-00816-x
164 TC Theoharides, S Asadi, AB. Patel Focal brain inflammation and autism. J Neuroinflammation 2013;10:815.
https://doi.org/10.1186/1742-2094-10-46
165 B Trost, B Thiruvahindrapuram, AJS Chan et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022;185:4409–4427.e18.
166 T Uesaka, HM Young, V Pachnis et al. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016;417:158–167.
https://doi.org/10.1016/j.ydbio.2016.04.016
167 A Veerakumar, AR Yung, Y Liu et al. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 2022;606:739–746.
https://doi.org/10.1038/s41586-022-04760-8
168 NJ. Vickers Animal communication: When I’m Calling You, Will You Answer Too? Curr Biol 2017;27:R713–R715.
https://doi.org/10.1016/j.cub.2017.05.064
169 HE Vuong, JM Yano, TC Fung et al. The microbiome and host behavior. Annu Rev Neurosci 2017;40:21–49.
https://doi.org/10.1146/annurev-neuro-072116-031347
170 Y Wan, T Zuo, Z Xu et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 2022;71:910–918.
https://doi.org/10.1136/gutjnl-2020-324015
171 L-J Wang, C-Y Yang, W-J Chou et al. Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2020;29:287–297.
https://doi.org/10.1007/s00787-019-01352-2
172 EK Williams, RB Chang, DE Strochlic et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 2016;166:209–221.
https://doi.org/10.1016/j.cell.2016.05.011
173 HR Willsey, AJ Willsey, B Wang et al. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022;23:323–341.
https://doi.org/10.1038/s41583-022-00576-7
174 JMW Wong, R de Souza, CWC Kendall et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235–243.
https://doi.org/10.1097/00004836-200603000-00015
175 V Woo, T. Alenghat Epigenetic regulation by gut microbiota. Gut Microbes 2022.
https://doi.org/10.1080/19490976.2021.2022407
176 W-L Wu, MD Adame, C-W Liou et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 2021;595:409–414.
https://doi.org/10.1038/s41586-021-03669-y
177 C X Ya, A K Henders, G A Alvares et al. Interactions between the lipidome and genetic and environmental factors in autism. Nature Medicine 2023;29(4):936–949.
https://doi.org/10.1038/s41591-023-02271-1
178 Y Yan, W Jiang, T Spinetti et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 2013;38:1154–1163.
https://doi.org/10.1016/j.immuni.2013.05.015
179 JM Yano, K Yu, GP Donaldson et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–276.
https://doi.org/10.1016/j.cell.2015.02.047
180 CX Yap, AK Henders, GA Alvares et al. 1.3 Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021;184:5916–5931.e17.
https://doi.org/10.1016/j.cell.2021.10.015
181 FM Yavitt, BE Kirkpatrick, MR Blatchley et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci Adv 2023;9:eadd5668.
https://doi.org/10.1126/sciadv.add5668
182 Y Yu, B Zhang, P Ji et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8+/− mouse model of ASD-like behavior. Nat Commun 2022;13:1151.
https://doi.org/10.1038/s41467-022-28746-2
183 B Yuan, M Wang, X Wu et al. Identification of de novo mutations in the Chinese Autism Spectrum Disorder cohort via whole-exome sequencing unveils brain regions implicated in autism. Neurosci Bull 2023.
https://doi.org/10.21203/rs.3.rs-729083/v2
184 KE Zengeler, JR. Lukens Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021;21:454–468.
https://doi.org/10.1038/s41577-020-00487-7
185 L Zheng, CJ Kelly, KD Battista et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor–dependent repression of Claudin-2. J Immunol 2017;199:2976–2984.
https://doi.org/10.4049/jimmunol.1700105
186 Y Zheng, MK Bek, NZ Prince et al. The role of bacterial-derived aromatic amino acids metabolites relevant in autism spectrum disorders: a comprehensive review. Front Neurosci 2021;15:738220.
https://doi.org/10.3389/fnins.2021.738220
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed