Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2011, Vol. 2 Issue (10) : 827-836    https://doi.org/10.1007/s13238-011-1105-3      PMID: 22058037
RESEARCH ARTICLE
Structural insight into substrate specificity of human intestinal maltase-glucoamylase
Limei Ren1,2, Xiaohong Qin1,3, Xiaofang Cao1,2, Lele Wang1,3, Fang Bai2, Gang Bai1,2(), Yuequan Shen1,3()
1. State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; 2. College of Pharmacy, Nankai University, Tianjin 300071, China; 3. College of Life Sciences, Nankai University, Tianjin 300071, China
 Download: PDF(633 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human maltase-glucoamylase (MGAM) hydrolyzes linear alpha-1,4-linked oligosaccharide substrates, playing a crucial role in the production of glucose in the human lumen and acting as an efficient drug target for type 2 diabetes and obesity. The amino- and carboxyl-terminal portions of MGAM (MGAM-N and MGAM-C) carry out the same catalytic reaction but have different substrate specificities. In this study, we report crystal structures of MGAM-C alone at a resolution of 3.1 ?, and in complex with its inhibitor acarbose at a resolution of 2.9 ?. Structural studies, combined with biochemical analysis, revealed that a segment of 21 amino acids in the active site of MGAM-C forms additional sugar subsites (+2 and+3 subsites), accounting for the preference for longer substrates of MAGM-C compared with that of MGAM-N. Moreover, we discovered that a single mutation of Trp1251 to tyrosine in MGAM-C imparts a novel catalytic ability to digest branched alpha-1,6-linked oligosaccharides. These results provide important information for understanding the substrate specificity of alpha-glucosidases during the process of terminal starch digestion, and for designing more efficient drugs to control type 2 diabetes or obesity.

Keywords MGAM C-terminal domain      inhibitor      crystal structure      acarbose      type 2 diabetes     
Corresponding Author(s): Bai Gang,Email:gangbai@nankai.edu.cn (G. Bai); yshen@nankai.edu.cn; Shen Yuequan,Email:yuequan74@yahoo.com (Y. Shen)   
Issue Date: 01 October 2011
 Cite this article:   
Limei Ren,Lele Wang,Fang Bai, et al. Structural insight into substrate specificity of human intestinal maltase-glucoamylase[J]. Prot Cell, 2011, 2(10): 827-836.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-011-1105-3
https://academic.hep.com.cn/pac/EN/Y2011/V2/I10/827
Fig.1  Structure of the MGAM-C/acarbose complex.
(A) Schematic representation of human MGAM domains with amino-acid boundaries; (B) Schematic drawing of the structure of acarbose; (C) Ribbon diagram of the MGAM-C/acarbose complex. Individual domains are colored as follows: trefoil Type-P domain (blue), N-terminal domain (yellow), catalytic (β/α)8 domain (red), catalytic domain Insert 1 (orange), catalytic domain Insert 2 (pink), proximal C-terminal domain (ProxC) (green), and distal C-terminal domain (DistC) (purple). The bound inhibitor acarbose is shown as a stick model and colored cyan. N, N terminal; C, C terminal.
Fig.1  Structure of the MGAM-C/acarbose complex.
(A) Schematic representation of human MGAM domains with amino-acid boundaries; (B) Schematic drawing of the structure of acarbose; (C) Ribbon diagram of the MGAM-C/acarbose complex. Individual domains are colored as follows: trefoil Type-P domain (blue), N-terminal domain (yellow), catalytic (β/α)8 domain (red), catalytic domain Insert 1 (orange), catalytic domain Insert 2 (pink), proximal C-terminal domain (ProxC) (green), and distal C-terminal domain (DistC) (purple). The bound inhibitor acarbose is shown as a stick model and colored cyan. N, N terminal; C, C terminal.
Fig.2  Interaction of MGAM-C with acarbose.
(A) Stereo view of the 2Fo-Fc electron density map in the active site of the MGAM-C/acarbose structure contoured at the 2.0σ level and shown in blue. Acarbose is represented as thick cyan sticks, and the active-site residues are represented as thin green sticks. (B) The diagrammatic representations of the hydrogen bonds (dashed lines) and hydrophobic interactions (dashed-lined semicircles) formed by MGAM-C with inhibitor acarbose. Sugar subsites (-1, +1, +2 and+3) are labeled accordingly.
Fig.2  Interaction of MGAM-C with acarbose.
(A) Stereo view of the 2Fo-Fc electron density map in the active site of the MGAM-C/acarbose structure contoured at the 2.0σ level and shown in blue. Acarbose is represented as thick cyan sticks, and the active-site residues are represented as thin green sticks. (B) The diagrammatic representations of the hydrogen bonds (dashed lines) and hydrophobic interactions (dashed-lined semicircles) formed by MGAM-C with inhibitor acarbose. Sugar subsites (-1, +1, +2 and+3) are labeled accordingly.
SubstrateKm (mmol/L)
MGAMaMGAM-NMGAM-CMGAM-C-deltaS
Maltose2.16.40±0.585.67±0.265.91±0.72
Maltotriose1.14.44±0.570.91±0.111.89±0.37
Maltotetraose0.43.39±0.310.96±0.064.73±0.36
Maltopentaose0.49.14±0.240.61±0.068.24±1.25
Maltohexaose0.79.76±0.211.05±0.1012.33±0.91
Maltoheptaose113.12±2.602.27±0.3313.70±1.78
Tab.1  Kinetic parameters for wild-type and mutant MGAM
Fig.3  Substrate specificity of MGAM-C.
(A) Sequence alignment of crucial insertions in MGAM and SI enzymes. Highly conserved residues are colored white, and moderately conserved residues are colored red. (B) Superposition of MGAM-C/acarbose (light cyan), MGAM-N (light purple) and SI-N (pink) active sites. Acarbose is represented as thick cyan sticks, and the additional 21 amino acids in MGAM-C are colored red. The approximate locations of the –1 to+3 subsites in MGAM-C are labeled. (C) Surface representation of the MGAM-C (light cyan)/acarbose (cyan), MGAM-N (light purple)/acarbose (yellow) and SI-N (pink)/kotalanol (green) active sites, with non-structurally conserved residues displayed as green, purple and magenta sticks, respectively. The surface of the additional 21 amino acids in MGAM-C is colored red.
Fig.3  Substrate specificity of MGAM-C.
(A) Sequence alignment of crucial insertions in MGAM and SI enzymes. Highly conserved residues are colored white, and moderately conserved residues are colored red. (B) Superposition of MGAM-C/acarbose (light cyan), MGAM-N (light purple) and SI-N (pink) active sites. Acarbose is represented as thick cyan sticks, and the additional 21 amino acids in MGAM-C are colored red. The approximate locations of the –1 to+3 subsites in MGAM-C are labeled. (C) Surface representation of the MGAM-C (light cyan)/acarbose (cyan), MGAM-N (light purple)/acarbose (yellow) and SI-N (pink)/kotalanol (green) active sites, with non-structurally conserved residues displayed as green, purple and magenta sticks, respectively. The surface of the additional 21 amino acids in MGAM-C is colored red.
Maltose (α-1,4)Isomaltose (α-1,6)
SubstrateKm (mmol·L-1)Kcat (S-1)Kcat/Km (S-1/mmol·L-1)Km (mmol·L-1)Kcat (S-1)Kcat/Km (S-1/ mmol·L-1)
MGAM-N6.40±0.5848.62±8.937.5770.45±6.706.92±0.720.10
MGAM-N-Y299W8.81±0.4623.27±0.802.6423.46±4.454.60±0.210.20
MGAM-C5.67±0.2622.49±0.963.97N.D.N.D.N.D.
MGAM-C-Y1251W16.16±1.497.12±0.750.4449.95±1.030.39±0.020.01
Tab.2  Kinetic parameters for α-1,4 and α-1,6 substrate hydrolysis by MGAM mutants
Crystal nameMGAM-C aloneMGAM-C/acarbose
Space groupBoldItalic43212BoldItalic43212
Unit cell (?)a = b = 106.23, c = 517.56a = b = 105.50, c = 516.56
Wavelength (?)0.97940.9794
Resolution range (?)50-3.0 (3.1-3.0)50-2.9 (3.0-2.9)
No. of unique reflections50,13159,475
Redundancy8.6 (5.0)a13.3 (7.2)a
BoldItalicsym (%)b6.9 (38.3)a6.6 (43.7)a
BoldItalic/BoldItalic40.5 (2.2)a66.9 (2.2)a
Completeness (%) 99.4 (24.2)a99.3 (45.1)a
Refinement
Resolution range (?)50-3.150-2.9
Rcrystal (%)c23.221.9
Rfree (%)d28.828.4
RMSDbond (?)0.010.009
RMSDangle(°)1.311.27
Number of
protein atoms14,25214,352
ligand atoms088
solvent atoms2040
Residues in (%)
most favored 78.480.0
additional allowed20.118.4
generously allowed1.41.4
disallowed0.10.1
Average B factor (?2) of
protein58.988.4
ligand atoms-88.0
solvent atoms27.158.5
Tab.3  Data collection and refinement statistics
1 Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221
pmid:20124702.
2 Brayer, G.D., Luo, Y., and Withers, S.G. (1995). The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci 4, 1730–1742
pmid:8528071.
3 Brayer, G.D., Sidhu, G., Maurus, R., Rydberg, E.H., Braun, C., Wang, Y., Nguyen, N.T., Overall, C.M., and Withers, S.G. (2000). Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 39, 4778–4791
pmid:10769135.
4 Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905–921
pmid:9757107.
5 Cowell, G.M., Tranum-Jensen, J., Sj?str?m, H., and Norén, O. (1986). Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem J 237, 455–461
pmid:3800897.
6 Dahlqvist, A., and Telenius, U. (1969). Column chromatography of human small-intestinal maltase, isomaltase and invertase activities. Biochem J 111, 139–146
pmid:5763786.
7 Danielsen, E.M. (1994). Dimeric assembly of enterocyte brush border enzymes. Biochemistry 33, 1599–1605
pmid:7906143.
8 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132
pmid:15572765.
9 Ernst, H.A., Lo Leggio, L., Willemo?s, M., Leonard, G., Blum, P., and Larsen, S. (2006). Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358, 1106–1124
pmid:16580018.
10 Gray, G.M., Lally, B.C., and Conklin, K.A. (1979). Action of intestinal sucrase-isomaltase and its free monomers on an alpha-limit dextrin. J Biol Chem 254, 6038–6043
pmid:16580018.
11 Heymann, H., Breitmeier, D., and Günther, S. (1995). Human small intestinal sucrase-isomaltase: different binding patterns for malto- and isomaltooligosaccharides. Biol Chem Hoppe Seyler 376, 249–253
pmid:7626234.
12 Jenkins, D.J., Taylor, R.H., Goff, D.V., Fielden, H., Misiewicz, J.J., Sarson, D.L., Bloom, S.R., and Alberti, K.G. (1981). Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30, 951–954
pmid:7028548.
13 Lee, B., and Richards, F.M. (1971). The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55, 379–400
pmid:5551392.
14 Low, L.C. (2010). The epidemic of type 2 diabetes mellitus in the Asia-Pacific region. Pediatr Diabetes 11, 212–215
pmid:20618742.
15 McCoy, A.J. (2007). Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63, 32–41
pmid:17164524.
16 Nichols, B.L., Avery, S., Sen, P., Swallow, D.M., Hahn, D., and Sterchi, E. (2003). The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci U S A 100, 1432–1437
pmid:12547908.
17 Nichols, B.L., Eldering, J., Avery, S., Hahn, D., Quaroni, A., and Sterchi, E. (1998). Human small intestinal maltase-glucoamylase cDNA cloning. Homology to sucrase-isomaltase. J Biol Chem 273, 3076–3081
pmid:9446624.
18 Nichols, B.L., Quezada-Calvillo, R., Robayo-Torres, C.C., Ao, Z., Hamaker, B.R., Butte, N.F., Marini, J., Jahoor, F., and Sterchi, E.E. (2009). Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J Nutr 139, 684–690
pmid:19193815.
19 Otwinowski, Z., and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 307–326 .
20 Qin, X., Ren, L., Yang, X., Bai, F., Wang, L., Geng, P., Bai, G., and Shen, Y. (2011). Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. J Struct Biol 174, 196–202
pmid:21111049.
21 Quezada-Calvillo, R., Robayo-Torres, C.C., Opekun, A.R., Sen, P., Ao, Z., Hamaker, B.R., Quaroni, A., Brayer, G.D., Wattler, S., Nehls, M.C., (2007). Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J Nutr 137, 1725–1733
pmid:17585022.
22 Quezada-Calvillo, R., Sim, L., Ao, Z., Hamaker, B.R., Quaroni, A., Brayer, G.D., Sterchi, E.E., Robayo-Torres, C.C., Rose, D.R., and Nichols, B.L. (2008). Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J Nutr 138, 685–692
pmid:18356321.
23 Rabasa-Lhoret, R., and Chiasson, J.L. (1998). Potential of alpha-glucosidase inhibitors in elderly patients with diabetes mellitus and impaired glucose tolerance. Drugs Aging 13, 131–143
pmid:9739502.
24 Rossi, E.J., Sim, L., Kuntz, D.A., Hahn, D., Johnston, B.D., Ghavami, A., Szczepina, M.G., Kumar, N.S., Sterchi, E.E., Nichols, B.L., (2006). Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. FEBS J 273, 2673–2683
pmid:16817895.
25 Semenza, G. (1986). Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol 2, 255–313
pmid:3548768.
26 Sim, L., Quezada-Calvillo, R., Sterchi, E.E., Nichols, B.L., and Rose, D.R. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375, 782–792
pmid:18036614.
27 Sim, L., Willemsma, C., Mohan, S., Naim, H.Y., Pinto, B.M., and Rose, D.R. (2010). Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285, 17763–17770
pmid:20356844.
28 Van Beers, E.H., Büller, H.A., Grand, R.J., Einerhand, A.W., and Dekker, J. (1995). Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 30, 197–262
pmid:7555019.
[1] Rui Xiong, Leike Zhang, Shiliang Li, Yuan Sun, Minyi Ding, Yong Wang, Yongliang Zhao, Yan Wu, Weijuan Shang, Xiaming Jiang, Jiwei Shan, Zihao Shen, Yi Tong, Liuxin Xu, Yu Chen, Yingle Liu, Gang Zou, Dimitri Lavillete, Zhenjiang Zhao, Rui Wang, Lili Zhu, Gengfu Xiao, Ke Lan, Honglin Li, Ke Xu. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2[J]. Protein Cell, 2020, 11(10): 723-739.
[2] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[3] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[4] Hongliang Tian,Xiaoyun Ji,Xiaoyun Yang,Zhongxin Zhang,Zuokun Lu,Kailin Yang,Cheng Chen,Qi Zhao,Heng Chi,Zhongyu Mu,Wei Xie,Zefang Wang,Huiqiang Lou,Haitao Yang,Zihe Rao. Structural basis of Zika virus helicase in recognizing its substrates[J]. Protein Cell, 2016, 7(8): 562-570.
[5] Hong Zhou,Rongzhen Xu. Leukemia stem cells: the root of chronic myeloid leukemia[J]. Protein Cell, 2015, 6(6): 403-412.
[6] Shishang Dong,Peng Yang,Guobang Li,Baocheng Liu,Wenming Wang,Xiang Liu,Boran Xia,Cheng Yang,Zhiyong Lou,Yu Guo,Zihe Rao. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution[J]. Protein Cell, 2015, 6(5): 351-362.
[7] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[8] Ning Hao,Yutao Chen,Ming Xia,Ming Tan,Wu Liu,Xiaotao Guan,Xi Jiang,Xuemei Li,Zihe Rao. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope[J]. Protein Cell, 2015, 6(2): 101-116.
[9] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[10] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[11] Chenjun Jia,Mei Li,Jianjun Li,Jingjing Zhang,Hongmei Zhang,Peng Cao,Xiaowei Pan,Xuefeng Lu,Wenrui Chang. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases[J]. Protein Cell, 2015, 6(1): 55-67.
[12] Yuran Song,Tang Hai,Ying Wang,Runfa Guo,Wei Li,Liu Wang,Qi Zhou. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor—m-carboxycinnamic acid bishydroxamide (CBHA)[J]. Protein Cell, 2014, 5(5): 382-393.
[13] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
[14] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[15] Jun Li, Yu Dong, Xingru Lü, Lu Wang, Wei Peng, Xuejun C. Zhang, Zihe Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6[J]. Prot Cell, 2013, 4(7): 548-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed