Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (7) : 497-507    https://doi.org/10.1007/s13238-012-0042-0      PMID: 22773340
REVIEW
Functional regulation of monocyte-derived dendritic cells by microRNAs
Yifan Zhan1,2(), Li Wu3
1. The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; 2. Department of Medical Biology, University of Melbourne, Parkville 3010, Australia; 3. Tsignhua University and Peking University Joint Center for Life Sciences and Tsinghua University School of Medicine, Beijing 100084, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dendritic cells (DCs) as a rare type of leukocytes play an important role in bridging the innate and adaptive immune system. A subset of DCs, monocyte-derived dendritic cells (moDCs), exists in very low numbers at steady state but become abundant in inflammatory states. These inflammation-associated DCs are potent producers of pro-inflammatory cytokines and potent inducers of T helper differentiation. They behave as a “double-edge” sword so that they not only mediate protective immunity but also immuno-pathology. It is still incompletely understood how their function is regulated. Emerging evidence indicates that microRNAs (miRNAs), as a new class of gene regulators, potently regulate the function of moDCs. Here we summarize recent progress in this area.

Keywords dendritic cells      microRNA      function     
Corresponding Author(s): Zhan Yifan,Email:zhan@wehi.edu.au   
Issue Date: 01 July 2012
 Cite this article:   
Yifan Zhan,Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-0042-0
https://academic.hep.com.cn/pac/EN/Y2012/V3/I7/497
1 Aldridge, J.R., Jr., Moseley, C.E., Boltz, D.A., Negovetich, N.J., Reynolds, C., Franks, J., Brown, S.A., Doherty, P.C., Webster, R.G., and Thomas, P.G. (2009). TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A 106, 5306-5311 .
doi: 10.1073/pnas.0900655106
2 Aliberti, J., Schulz, O., Pennington, D.J., Tsujimura, H., Reis e Sousa, C., Ozato, K., and Sher, A. (2003). Essential role for ICSBP in the in vivo development of murine CD8alpha+ dendritic cells. Blood 101, 305-310 .
doi: 10.1182/blood-2002-04-1088
3 Asselin-Paturel, C., Boonstra, A., Dalod, M., Durand, I., Yessaad, N., Dezutter-Dambuyant, C., Vicari, A., O'Garra, A., Biron, C., Briere, F.,.(2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144-1150 .
doi: 10.1038/ni736
4 Bedoui, S., Whitney, P.G., Waithman, J., Eidsmo, L., Wakim, L., Caminschi, I., Allan, R.S., Wojtasiak, M., Shortman, K., Carbone, F.R.,.(2009). Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10, 488-495 .
doi: 10.1038/ni.1724
5 Bogunovic, M., Ginhoux, F., Helft, J., Shang, L., Hashimoto, D., Greter, M., Liu, K., Jakubzick, C., Ingersoll, M.A., Leboeuf, M.,.(2009). Origin of the lamina propria dendritic cell network. Immunity 31, 513-525 .
doi: 10.1016/j.immuni.2009.08.010
6 Campbell, I.K., van Nieuwenhuijze, A., Segura, E., O'Donnell, K., Coghill, E., Hommel, M., Gerondakis, S., Villadangos, J.A., and Wicks, I.P. (2011). Differentiation of inflammatory dendritic cells is mediated by NF-{kappa}B1-dependent GM-CSF production in CD4 T cells. J Immunol 186, 5468-5477 .
doi: 10.4049/jimmunol.1002923
7 Carotta, S., Dakic, A., D'Amico, A., Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L. (2010). The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628-641 .
doi: 10.1016/j.immuni.2010.05.005
8 Cekaite, L., Clancy, T., and Sioud, M. (2010). Increased miR-21 expression during human monocyte differentiation into DCs. Front Biosci (Elite Ed) 2, 818-828 .
doi: 10.2741/E143
9 Ceppi, M., Pereira, P.M., Dunand-Sauthier, I., Barras, E., Reith, W., Santos, M.A., and Pierre, P.. (2009). MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocytederived dendritic cells. Proc Natl Acad Sci U S A 106, 2735-2740 .
doi: 10.1073/pnas.0811073106
10 Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86 .
doi: 10.1126/science.1091903
11 Chen, T., Li, Z., Jing, T., Zhu, W., Ge, J., Zheng, X., Pan, X., Yan, H., and Zhu, J. (2011a). MicroRNA-146a regulates the maturation process and pro-inflammatory cytokine secretion by targeting CD40L in oxLDL-stimulated dendritic cells. FEBS Lett 585, 567-573 .
doi: 10.1016/j.febslet.2011.01.010
12 Chen, T., Li, Z., Tu, J., Zhu, W., Ge, J., Zheng, X., Yang, L., Pan, X., Yan, H., and Zhu, J. (2011b). MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett 585, 657-663 .
doi: 10.1016/j.febslet.2011.01.027
13 Chen, T., Yan, H., Li, Z., Jing, T., Zhu, W., Ge, J., Zheng, X., Pan, X., and Zhu, J. (2011c). MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/macrophages. Int J Cardiol 147, 446-447 .
doi: 10.1016/j.ijcard.2010.10.133
14 Cheong, C., Matos, I., Choi, J.H., Dandamudi, D.B., Shrestha, E., Longhi, M.P., Jeffrey, K.L., Anthony, R.M., Kluger, C., Nchinda, G.,.(2010). Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143, 416-429 .
doi: 10.1016/j.cell.2010.09.039
15 Chong, M.M., Rasmussen, J.P., Rudensky, A.Y., and Littman, D.R. (2008). The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205, 2005-2017 .
doi: 10.1084/jem.20081219
16 den Haan, J.M., Lehar, S.M., and Bevan, M.J. (2000). CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192, 1685-1696 .
doi: 10.1084/jem.192.12.1685
17 Dominguez, P.M., and Ardavin, C. (2010). Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234, 90-104 .
doi: 10.1111/j.0105-2896.2009.00876.x
18 Du, J., Wang, J., Tan, G., Cai, Z., Zhang, L., Tang, B., and Wang, Z. (2012). Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol . (In press)
doi: 10.1007/s12032-012-0175-2
19 Dunand-Sauthier, I., Santiago-Raber, M.L., Capponi, L., Vejnar, C.E., Schaad, O., Irla, M., Seguin-Estevez, Q., Descombes, P., Zdobnov, E.M., Acha-Orbea, H.,.(2011). Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 117, 4490-4500 .
doi: 10.1182/blood-2010-09-308064
20 Edelson, B.T., Bradstreet, T.R., Hildner, K., Carrero, J.A., Frederick, K.E., Kc, W., Belizaire, R., Aoshi, T., Schreiber, R.D., Miller, M.J.,.(2011). CD8alpha(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236-248 .
doi: 10.1016/j.immuni.2011.06.012
21 Edelson, B.T., Kc, W., Juang, R., Kohyama, M., Benoit, L.A., Klekotka, P.A., Moon, C., Albring, J.C., Ise, W., Michael, D.G.,.(2010). Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 207, 823-836 .
doi: 10.1084/jem.20091627
22 Edwards, A.D., Diebold, S.S., Slack, E.M., Tomizawa, H., Hemmi, H., Kaisho, T., Akira, S., and Reis e Sousa, C. (2003). Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33, 827-833 .
doi: 10.1002/eji.200323797
23 Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R.,.(2000). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587-597 .
doi: 10.1016/S0092-8674(00)80694-7
24 Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., and Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science 327, 656-661 .
doi: 10.1126/science.1178331
25 Grumont, R., Hochrein, H., O'Keeffe, M., Gugasyan, R., White, C., Caminschi, I., Cook, W., and Gerondakis, S. (2001). c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 194, 1021-1032 .
doi: 10.1084/jem.194.8.1021
26 Hashimi, S.T., Fulcher, J.A., Chang, M.H., Gov, L., Wang, S., and Lee, B. (2009). MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114, 404-414 .
doi: 10.1182/blood-2008-09-179150
27 Hochrein, H., Shortman, K., Vremec, D., Scott, B., Hertzog, P., and O'Keeffe, M. (2001). Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 166, 5448-5455 .
28 Hsieh, C.S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O'Garra, A., and Murphy, K.M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547-549 .
doi: 10.1126/science.8097338
29 Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176, 1693-1702 .
doi: 10.1084/jem.176.6.1693
30 Iyoda, T., Shimoyama, S., Liu, K., Omatsu, Y., Akiyama, Y., Maeda, Y., Takahara, K., Steinman, R.M., and Inaba, K. (2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195, 1289-1302 .
doi: 10.1084/jem.20020161
31 Jackson, J.T., Hu, Y., Liu, R., Masson, F., D'Amico, A., Carotta, S., Xin, A., Camilleri, M.J., Mount, A.M., Kallies, A., . (2011). Id2 expression delineates differential checkpoints in the genetic program of CD8alpha(+) and CD103(+) dendritic cell lineages. EMBO J 30, 2690-2704 .
doi: 10.1038/emboj.2011.163
32 Johnson, S., Zhan, Y., Sutherland, R.M., Mount, A.M., Bedoui, S., Brady, J.L., Carrington, E.M., Brown, L.E., Belz, G.T., Heath, W.R.,.(2009). Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. Immunity 30, 218-227 .
doi: 10.1016/j.immuni.2008.11.015
33 Jurkin, J., Schichl, Y.M., Koeffel, R., Bauer, T., Richter, S., Konradi, S., Gesslbauer, B., and Strobl, H. (2010). miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 184, 4955-4965 .
doi: 10.4049/jimmunol.0903021
34 Kaplan, D.H., Jenison, M.C., Saeland, S., Shlomchik, W.D., and Shlomchik, M.J. (2005). Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611-620 .
doi: 10.1016/j.immuni.2005.10.008
35 King, I.L., Kroenke, M.A., and Segal, B.M. (2010). GM-CSFdependent, CD103+ dermal dendritic cells play a critical role in Theffector cell differentiation after subcutaneous immunization. J Exp Med 207, 953-961 .
doi: 10.1084/jem.20091844
36 Kuipers, H., Schnorfeil, F.M., and Brocker, T. (2010a). Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development. Mol Immunol 48, 333-340 .
doi: 10.1016/j.molimm.2010.07.007
37 Kuipers, H., Schnorfeil, F.M., Fehling, H.J., Bartels, H., and Brocker, T. (2010b). Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol 185, 400-409 .
doi: 10.4049/jimmunol.0903912
38 Lanoue, A., Clatworthy, M.R., Smith, P., Green, S., Townsend, M.J., Jolin, H.E., Smith, K.G., Fallon, P.G., and McKenzie, A.N. (2004). SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200, 1383-1393 .
doi: 10.1084/jem.20040795
39 Leon, B., Lopez-Bravo, M., and Ardavin, C. (2007). Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519-531 .
doi: 10.1016/j.immuni.2007.01.017
40 Lewis, K.L., Caton, M.L., Bogunovic, M., Greter, M., Grajkowska, L.T., Ng, D., Klinakis, A., Charo, I.F., Jung, S., Gommerman, J.L.,.(2011). Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780-791 .
doi: 10.1016/j.immuni.2011.08.013
41 Liu, X., Zhan, Z., Xu, L., Ma, F., Li, D., Guo, Z., Li, N., and Cao, X. (2010). MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. J Immunol 185, 7244-7251 .
doi: 10.4049/jimmunol.1001573
42 Liu, Y., Chen, Q., Song, Y., Lai, L., Wang, J., Yu, H., Cao, X., and Wang, Q. (2011). MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 585, 1963-1968 .
doi: 10.1016/j.febslet.2011.05.029
43 Lu, C., Huang, X., Zhang, X., Roensch, K., Cao, Q., Nakayama, K.I., Blazar, B.R., Zeng, Y., and Zhou, X. (2011a). miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117, 4293-4303 .
doi: 10.1182/blood-2010-12-322503
44 Lu, L.F., Thai, T.H., Calado, D.P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G.B., Lee, H., Yoshimura, A., Rajewsky, K., . (2009a). Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80-91 .
doi: 10.1016/j.immuni.2008.11.010
45 Lu, T.X., Hartner, J., Lim, E.J., Fabry, V., Mingler, M.K., Cole, E.T., Orkin, S.H., Aronow, B.J., and Rothenberg, M.E. (2011b). MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187, 3362-3373 .
doi: 10.4049/jimmunol.1101235
46 Lu, T.X., Munitz, A., and Rothenberg, M.E. (2009b). MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182, 4994-5002 .
doi: 10.4049/jimmunol.0803560
47 Ma, F., Liu, X., Li, D., Wang, P., Li, N., Lu, L., and Cao, X. (2010). MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolinmediated IL-10 mRNA degradation. J Immunol 184, 6053-6059 .
doi: 10.4049/jimmunol.0902308
48 Martinez-Nunez, R.T., Louafi, F., Friedmann, P.S., and Sanchez-Elsner, T. (2009). MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284, 16334-16342 .
doi: 10.1074/jbc.M109.011601
49 Merad, M., Ginhoux, F., and Collin, M. (2008). Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8, 935-947 .
doi: 10.1038/nri2455
50 Montecalvo, A., Larregina, A.T., Shufesky, W.J., Stolz, D.B., Sullivan, M.L., Karlsson, J.M., Baty, C.J., Gibson, G.A., Erdos, G., Wang, Z., . (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756-766 .
doi: 10.1182/blood-2011-02-338004
51 Naik, S.H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O'Keeffe, M., and Shortman, K. (2006). Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. NatImmunol 7, 663-671 .
doi: 10.1038/ni1340
52 Nakano, H., Yanagita, M., and Gunn, M.D. (2001). CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194, 1171-1178 .
doi: 10.1084/jem.194.8.1171
53 Neuenhahn, M., Kerksiek, K.M., Nauerth, M., Suhre, M.H., Schiemann, M., Gebhardt, F.E., Stemberger, C., Panthel, K., Schroder, S., Chakraborty, T., . (2006). CD8alpha+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25, 619-630 .
doi: 10.1016/j.immuni.2006.07.017
54 O'Connell, R.M., Chaudhuri, A.A., Rao, D.S., and Baltimore, D. (2009). Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106, 7113-7118 .
doi: 10.1073/pnas.0902636106
55 O'Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, M.E., Rao, D.S., and Baltimore, D. (2010). MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607-619 .
doi: 10.1016/j.immuni.2010.09.009
56 O'Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J.L., Anders, E.M., Wu, L., Lahoud, M.H., Henri, S., Scott, B., . (2002). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196, 1307-1319 .
doi: 10.1084/jem.20021031
57 Pauley, K.M., Stewart, C.M., Gauna, A.E., Dupre, L.C., Kuklani, R., Chan, A.L., Pauley, B.A., Reeves, W.H., Chan, E.K., and Cha, S. (2011). Altered miR-146a expression in Sjogren's syndrome and its functional role in innate immunity. Eur J Immunol 41, 2029-2039 .
doi: 10.1002/eji.201040757
58 Pegtel, D.M., Cosmopoulos, K., Thorley-Lawson, D.A., van Eijndhoven, M.A., Hopmans, E.S., Lindenberg, J.L., de Gruijl, T.D., Wurdinger, T., and Middeldorp, J.M. (2010). Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107, 6328-6333 .
doi: 10.1073/pnas.0914843107
59 Poulin, L.F., Henri, S., de Bovis, B., Devilard, E., Kissenpfennig, A., and Malissen, B. (2007). The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204, 3119-3131 .
doi: 10.1084/jem.20071724
60 Reid, C.D., Stackpoole, A., Meager, A., and Tikerpae, J. (1992). Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 149, 2681-2688 .
61 Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A.,.(2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608-611 .
doi: 10.1126/science.1139253
62 Santiago-Schwarz, F., Divaris, N., Kay, C., and Carsons, S.E. (1993). Mechanisms of tumor necrosis factor-granulocyte-macrophage colony-stimulating factor-induced dendritic cell development. Blood 82, 3019-3028 .
63 Sathe, P., and Wu, L. (2011). The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets. Protein Cell 2, 620-630 .
doi: 10.1007/s13238-011-1088-0
64 Serbina, N.V., and Pamer, E.G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7, 311-317 .
doi: 10.1038/ni1309
65 Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A., and Pamer, E.G. (2003). TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70 .
doi: 10.1016/S1074-7613(03)00171-7
66 Sharma, A., Kumar, M., Aich, J., Hariharan, M., Brahmachari, S.K., Agrawal, A., and Ghosh, B. (2009). Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci U S A 106, 5761-5766 .
doi: 10.1073/pnas.0808743106
67 Shklovskaya, E., O'Sullivan, B.J., Ng, L.G., Roediger, B., Thomas, R., Weninger, W., and Fazekas de St Groth, B. (2011). Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A 108, 18049-18054 .
doi: 10.1073/pnas.1110076108
68 Shortman, K., and Naik, S.H. (2007). Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7, 19-30 .
doi: 10.1038/nri1996
69 Steinman, R.M., and Cohn, Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137, 1142-1162 .
doi: 10.1084/jem.137.5.1142
70 Stockinger, B., and Veldhoen, M. (2007). Differentiation and function of Th17 T cells. Curr Opin Immunol 19, 281-286 .
doi: 10.1016/j.coi.2007.04.005
71 Sun, Y., Varambally, S., Maher, C.A., Cao, Q., Chockley, P., Toubai, T., Malter, C., Nieves, E., Tawara, I., Wang, Y.,.(2011). Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 117, 6172-6183 .
doi: 10.1182/blood-2010-12-325647
72 Tserel, L., Runnel, T., Kisand, K., Pihlap, M., Bakhoff, L., Kolde, R., Peterson, H., Vilo, J., Peterson, P., and Rebane, A. (2011). MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of Toll-like receptor 4. J Biol Chem 286, 26487-26495 .
doi: 10.1074/jbc.M110.213561
73 Turner, M.L., Schnorfeil, F.M., and Brocker, T. (2011). MicroRNAs regulate dendritic cell differentiation and function. J Immunol 187, 3911-3917 .
doi: 10.4049/jimmunol.1101137
74 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659 .
doi: 10.1038/ncb1596
75 Varol, C., Vallon-Eberhard, A., Elinav, E., Aychek, T., Shapira, Y., Luche, H., Fehling, H.J., Hardt, W.D., Shakhar, G., and Jung, S. (2009). Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502-512 .
doi: 10.1016/j.immuni.2009.06.025
76 Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R., and Carbone, F.R. (2008). Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198-202 .
doi: 10.1126/science.1151869
77 Wen, H., Dou, Y., Hogaboam, C.M., and Kunkel, S.L. (2008). Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111, 1797-1804 .
doi: 10.1182/blood-2007-08-106443
78 Xiao, C., Calado, D.P., Galler, G., Thai, T.H., Patterson, H.C., Wang, J., Rajewsky, N., Bender, T.P., and Rajewsky, K. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146-159 .
doi: 10.1016/j.cell.2007.07.021
79 Xiao, C., and Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell 136, 26-36 .
doi: 10.1016/j.cell.2008.12.027
80 Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H., and Kershaw, M.H. (2007). Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179, 7577-7584 .
81 Xue, X., Feng, T., Yao, S., Wolf, K.J., Liu, C.G., Liu, X., Elson, C.O., and Cong, Y. (2011). Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 187, 5879-5886 .
doi: 10.4049/jimmunol.1100535
82 Zhan, Y., Carrington, E.M., van Nieuwenhuijze, A., Bedoui, S., Seah, S., Xu, Y., Wang, N., Mintern, J.D., Villadangos, J.A., Wicks, I.P.,.(2011). GM-CSF increases cross presentation and CD103 expression by mouse CD8(+) spleen dendritic cells. Eur J Immunol . 41, 2585-2595 .
doi: 10.1002/eji.201141540
83 Zhan, Y., Xu, Y., and Lew, A.M. (2012). The regulation of the development and function of dendritic cell subsets by GM-CSF: More than a hematopoietic growth factor. Mol Immunol 52, 30-37 .
doi: 10.1016/j.molimm.2012.04.009
84 Zhan, Y., Xu, Y., Seah, S., Brady, J.L., Carrington, E.M., Cheers, C., Croker, B.A., Wu, L., Villadangos, J.A., and Lew, A.M. (2010). Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J Immunol 185, 2125-2133 .
doi: 10.4049/jimmunol.0903793
85 Zhang, M., Liu, F., Jia, H., Zhang, Q., Yin, L., Liu, W., Li, H., Yu, B., and Wu, J. (2011). Inhibition of microRNA let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. J Immunol 187, 1674-1683 .
doi: 10.4049/jimmunol.1001937
86 Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X.,.(2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144 .
doi: 10.1016/j.molcel.2010.06.010
87 Zheng, J., Jiang, H.Y., Li, J., Tang, H.C., Zhang, X.M., Wang, X.R., Du, J.T., Li, H.B., and Xu, G. (2012). MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-kappaB signalling pathways. Allergy 67, 362-370 .
doi: 10.1111/j.1398-9995.2011.02776.x
88 Zhou, H., Huang, X., Cui, H., Luo, X., Tang, Y., Chen, S., Wu, L., and Shen, N. (2010). miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116, 5885-5894 .
doi: 10.1182/blood-2010-04-280156
[1] Tongtong Cui, Zhikun Li, Qi Zhou, Wei Li. Current advances in haploid stem cells[J]. Protein Cell, 2020, 11(1): 23-33.
[2] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[3] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[4] Xin Wang, Zhiqiang An, Wenxin Luo, Ningshao Xia, Qinjian Zhao. Molecular and functional analysis of monoclonal antibodies in support of biologics development[J]. Protein Cell, 2018, 9(1): 74-85.
[5] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[6] Shaohong Chen, Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
[7] Zhiju Zhao,Shu Li,Erwei Song,Suling Liu. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells[J]. Protein Cell, 2016, 7(2): 89-99.
[8] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[9] Yanqing Liu,Uzair-ur-Rehman,Yu Guo,Hongwei Liang,Rongjie Cheng,Fei Yang,Yeting Hong,Chihao Zhao,Minghui Liu,Mengchao Yu,Xinyan Zhou,Kai Yin,Jiangning Chen,Junfeng Zhang,Chen-Yu Zhang,Feng Zhi,Xi Chen. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10): 722-734.
[10] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[11] Lin Lin,Qingqing Cai,Xiaoyan Zhang,Hongwei Zhang,Yang Zhong,Congjian Xu,Yanyun Li. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes[J]. Protein Cell, 2015, 6(8): 575-588.
[12] Haisheng Yu,Peng Zhang,Xiangyun Yin,Zhao Yin,Quanxing Shi,Ya Cui,Guanyuan Liu,Shouli Wang,Pier Paolo Piccaluga,Taijiao Jiang,Liguo Zhang. Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset[J]. Protein Cell, 2015, 6(4): 297-306.
[13] Yongdeng Zhang, Lusheng Gu, Hao Chang, Wei Ji, Yan Chen, Mingshu Zhang, Lu Yang, Bei Liu, Liangyi Chen, Tao Xu. Ultrafast, accurate, and robust localization of anisotropic dipoles[J]. Prot Cell, 2013, 4(8): 598-606.
[14] Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs[J]. Prot Cell, 2013, 4(5): 325-330.
[15] Yongkui Li, Jiajia Xie, Xiupeng Xu, Jun Wang, Fang Ao, Yushun Wan, Ying Zhu. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1[J]. Prot Cell, 2013, 4(2): 130-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed