Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (11) : 834-845    https://doi.org/10.1007/s13238-012-2078-6      PMID: 23073833
REVIEW
Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality
Suying Cao1, Kyle Loh2, Yangli Pei1, Wei Zhang1, Jianyong Han1()
1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; 2. Stem Cell and Developmental Biology, Genome Institute of Singapore, 138672, Singapore
 Download: PDF(324 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Differentiated cells can be reprogrammed into pluripotent stem cells, known as “induced pluripotent stem cells” (iPSCs), through the overexpression of defined transcription factors. The creation of iPSC lines has opened new avenues for patient-specific cell replacement therapies for regenerative medicine. However, the clinical utilization of iPSCs is largely impeded by two limitations. The first limitation is the low efficiency of iPSCs generation from differentiated cells. The second limitation is that many iPSC lines are not authentically pluripotent, as many cell lines inefficiently differentiate into differentiated cell types when they are tested for their ability to complement embryonic development. Thus, the “quality” of iPSCs must be increased if they are to be differentiated into specialized cell types for cell replacement therapies. Overcoming these two limitations is paramount to facilitate the widespread employment of iPSCs for therapeutic purposes. Here, we summarize recent progress made in strategies enabling the efficient production of high-quality iPSCs, including choice of reprogramming factors, choice of target cell type, and strategies to improve iPSC quality.

Keywords iPSCs      reprogramming      embryonic stem cells      efficiency and quality     
Corresponding Author(s): Han Jianyong,Email:hanjy@cau.edu.cn   
Issue Date: 01 November 2012
 Cite this article:   
Suying Cao,Kyle Loh,Yangli Pei, et al. Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality[J]. Prot Cell, 2012, 3(11): 834-845.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2078-6
https://academic.hep.com.cn/pac/EN/Y2012/V3/I11/834
1 Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., . (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 .
doi: 10.1038/nbt.1503
2 Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702 .
doi: 10.1126/science.1154884
3 Blelloch, R., Venere, M., Yen, J., and Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245-247 .
doi: 10.1016/j.stem.2007.08.008
4 Bosnali, M., and Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem 389, 851-861 .
doi: 10.1515/BC.2008.106
5 Brambrink, T., Foreman, R., Welstead, G.G., Lengner, C.J., Wernig, M., Suh, H., and Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151-159 .
doi: 10.1016/j.stem.2008.01.004
6 Carlson, H., Ota, S., Song, Y., Chen, Y., and Hurlin, P.J. (2002). Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. Oncogene 21, 3827-3835 .
doi: 10.1038/sj.onc.1205476
7 Chang, C.W., Lai, Y.S., Pawlik, K.M., Liu, K., Sun, C.W., Li, C., Schoeb, T.R., and Townes, T.M. (2009). Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27, 1042-1049 .
doi: 10.1002/stem.39
8 Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., Hock, H., and Hochedlinger, K. (2009). Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41, 968-976 .
doi: 10.1038/ng.428
9 Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., and Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467-2474 .
doi: 10.1634/stemcells.2008-0317
10 Esteban, M.A., and Pei, D. (2012). Vitamin C improves the quality of somatic cell reprogramming. Nat Genet 44, 366-367 .
doi: 10.1038/ng.2222
11 Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., . (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71-79 .
doi: 10.1016/j.stem.2009.12.001
12 Esteban, M.A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., . (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284, 17634-17640 .
doi: 10.1074/jbc.M109.008938
13 Ezashi, T., Telugu, B.P., Alexenko, A.P., Sachdev, S., Sinha, S., and Roberts, R.M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106, 10993-10998 .
doi: 10.1073/pnas.0905284106
14 Feng, B., Jiang, J., Kraus, P., Ng, J.H., Heng, J.C., Chan, Y.S., Yaw, L.P., Zhang, W., Loh, Y.H., Han, J., . (2009a). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11, 197-203 .
doi: 10.1038/ncb1827
15 Feng, B., Ng, J.H., Heng, J.C., and Ng, H.H. (2009b). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4, 301-312 .
doi: 10.1016/j.stem.2009.03.005
16 Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362 .
doi: 10.2183/pjab.85.348
17 Gonzalez, F., Barragan Monasterio, M., Tiscornia, G., Montserrat Pulido, N., Vassena, R., Batlle Morera, L., Rodriguez Piza, I., and Izpisua Belmonte, J.C. (2009). Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106, 8918-8922 .
doi: 10.1073/pnas.0901471106
18 Gore, A., Li, Z., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., . (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63-67 .
doi: 10.1038/nature09805
19 Graf, T., and Enver, T. (2009). Forcing cells to change lineages. Nature 462, 587-594 .
doi: 10.1038/nature08533
20 Han, J., Yuan, P., Yang, H., Zhang, J., Soh, B.S., Li, P., Lim, S.L., Cao, S., Tay, J., Orlov, Y.L., . (2010). Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463, 1096-1100 .
doi: 10.1038/nature08735
21 Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., . (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264 .
doi: 10.1016/j.cell.2008.03.028
22 Heng, J.C., Feng, B., Han, J., Jiang, J., Kraus, P., Ng, J.H., Orlov, Y.L., Huss, M., Yang, L., Lufkin, T., . (2010). The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6, 167-174 .
doi: 10.1016/j.stem.2009.12.009
23 Hochedlinger, K., and Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature 441, 1061-1067 .
doi: 10.1038/nature04955
24 Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132-1135 .
doi: 10.1038/nature08235
25 Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26, 795-797 .
doi: 10.1038/nbt1418
26 Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269-1275 .
doi: 10.1038/nbt.1502
27 Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., . (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58-62 .
doi: 10.1038/nature09871
28 Ichida, J.K., Blanchard, J., Lam, K., Son, E.Y., Chung, J.E., Egli, D., Loh, K.M., Carter, A.C., Di Giorgio, F.P., Koszka, K., . (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491-503 .
doi: 10.1016/j.stem.2009.09.012
29 Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., DeCoste, C., Schafer, X., Lun, Y., and Lemischka, I.R. (2006). Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533-538 .
doi: 10.1038/nature04915
30 Judson, R.L., Babiarz, J.E., Venere, M., and Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27, 459-461 .
doi: 10.1038/nbt.1535
31 Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., and Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771-775 .
doi: 10.1038/nature07864
32 Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Belmonte, J.C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140-1144 .
doi: 10.1038/nature08311
33 Keefer, C.L., Pant, D., Blomberg, L., and Talbot, N.C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 98, 147-168 .
doi: 10.1016/j.anireprosci.2006.10.009
34 Kim, J.B., Greber, B., Arauzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., and Scholer, H.R. (2009a). Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649-643 .
doi: 10.1038/nature08436
35 Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., . (2009b). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411-419 .
doi: 10.1016/j.cell.2009.01.023
36 Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., . (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-650 .
doi: 10.1038/nature07061
37 Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T., and Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340, 183-189 .
doi: 10.1016/j.bbrc.2005.11.164
38 Krizhanovsky, V., and Lowe, S.W. (2009). Stem cells: The promises and perils of p53. Nature 460, 1085-1086 .
doi: 10.1038/4601085a
39 Kustikova, O., Fehse, B., Modlich, U., Yang, M., Dullmann, J., Kamino, K., von Neuhoff, N., Schlegelberger, B., Li, Z., and Baum, C. (2005). Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308, 1171-1174 .
doi: 10.1126/science.1105063
40 Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M.A., and Serrano, M. (2009a). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139 .
doi: 10.1038/nature08290
41 Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S. (2009b). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4, 16-19 .
doi: 10.1016/j.stem.2008.11.014
42 Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., Li, H., Jia, N., Cheng, L., Xiao, H., . (2009). Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11-15 .
doi: 10.1016/j.stem.2008.11.013
43 Lin, S.L., Chang, D.C., Chang-Lin, S., Lin, C.H., Wu, D.T., Chen, D.T., and Ying, S.Y. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115-2124 .
doi: 10.1261/rna.1162708
44 Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., . (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587-590 .
doi: 10.1016/j.stem.2008.10.014
45 Lluis, F., Pedone, E., Pepe, S., and Cosma, M.P. (2008). Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell 3, 493-507 .
doi: 10.1016/j.stem.2008.08.017
46 Loh, Y.H., Agarwal, S., Park, I.H., Urbach, A., Huo, H., Heffner, G.C., Kim, K., Miller, J.D., Ng, K., and Daley, G.Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood , 5476-5479 .
doi: 10.1182/blood-2009-02-204800
47 Lowry, W.E., Richter, L., Yachechko, R., Pyle, A.D., Tchieu, J., Sridharan, R., Clark, A.T., and Plath, K. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105, 2883-2888 .
doi: 10.1073/pnas.0711983105
48 Lyssiotis, C.A., Foreman, R.K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L.L., Charette, B.D., Bouchez, L.C., . (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A 106, 8912-8917 .
doi: 10.1073/pnas.0903860106
49 Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, Y., Mochizuki, H., Goshima, N., and Yamanaka, S. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225-229 .
doi: 10.1038/nature10106
50 Maherali, N., and Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595-605 .
doi: 10.1016/j.stem.2008.11.008
51 Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Capetillo, O., Serrano, M., and Blasco, M.A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149-1153 .
doi: 10.1038/nature08287
52 Markoulaki, S., Hanna, J., Beard, C., Carey, B.W., Cheng, A.W., Lengner, C.J., Dausman, J.A., Fu, D., Gao, Q., Wu, S., . (2009). Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27, 169-171 .
doi: 10.1038/nbt.1520
53 Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R.A., and Jaenisch, R. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3, 132-135 .
doi: 10.1016/j.stem.2008.06.019
54 Matsui, T., Leung, D., Miyashita, H., Maksakova, I.A., Miyachi, H., Kimura, H., Tachibana, M., Lorincz, M.C., and Shinkai, Y. (2010). Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927-931 .
doi: 10.1038/nature08858
55 Melton, C., Judson, R.L., and Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621-626 .
doi: 10.1038/nature08725
56 Miyabayashi, T., Teo, J.L., Yamamoto, M., McMillan, M., Nguyen, C., and Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 104, 5668-5673 .
doi: 10.1073/pnas.0701331104
57 Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106 .
doi: 10.1038/nbt1374
58 Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-953 .
doi: 10.1126/science.1164270
59 Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141-146 .
doi: 10.1038/nature06534
60 Qin, D., Gan, Y., Shao, K., Wang, H., Li, W., Wang, T., He, W., Xu, J., Zhang, Y., Kou, Z., . (2008). Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. J Biol Chem 283, 33730-33735 .
doi: 10.1074/jbc.M806788200
61 Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Scholer, H.R., and Ding, S. (2008a). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568-574 .
doi: 10.1016/j.stem.2008.10.004
62 Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008b). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525-528 .
doi: 10.1016/j.stem.2008.05.011
63 Shi, Y., Zhao, Y., and Deng, H. (2010). Powering reprogramming with vitamin C. Cell Stem Cell 6, 1-2 .
doi: 10.1016/j.stem.2009.12.012
64 Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T.W., and Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6, e253.
doi: 10.1371/journal.pbio.0060253
65 Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., . (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964-977 .
doi: 10.1016/j.cell.2009.02.013
66 Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., and Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175-181 .
doi: 10.1038/nature09017
67 Stadtfeld, M., Brennand, K., and Hochedlinger, K. (2008a). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890-894 .
doi: 10.1016/j.cub.2008.05.010
68 Stadtfeld, M., Maherali, N., Breault, D.T., and Hochedlinger, K. (2008b). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230-240 .
doi: 10.1016/j.stem.2008.02.001
69 Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochedlinger, K. (2008c). Induced pluripotent stem cells generated without viral integration. Science 322, 945-949 .
doi: 10.1126/science.1162494
70 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 .
doi: 10.1016/j.cell.2007.11.019
71 Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 .
doi: 10.1016/j.cell.2006.07.024
72 Trounson, A. (2009). Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species. Cell Stem Cell 4, 3-4 .
doi: 10.1016/j.stem.2008.12.002
73 Utikal, J., Polo, J.M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R.M., Khalil, A., Rheinwald, J.G., and Hochedlinger, K. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145-1148 .
doi: 10.1038/nature08285
74 Varas, F., Stadtfeld, M., de Andres-Aguayo, L., Maherali, N., di Tullio, A., Pantano, L., Notredame, C., Hochedlinger, K., and Graf, T. (2009). Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27, 300-306 .
doi: 10.1634/stemcells.2008-0696
75 Wernig, M., Lengner, C.J., Hanna, J., Lodato, M.A., Steine, E., Foreman, R., Staerk, J., Markoulaki, S., and Jaenisch, R. (2008). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26, 916-924 .
doi: 10.1038/nbt1483
76 Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318-324 .
doi: 10.1038/nature05944
77 West, F.D., Terlouw, S.L., Kwon, D.J., Mumaw, J.L., Dhara, S.K., Hasneen, K., Dobrinsky, J.R., and Stice, S.L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19, 1211-1220 .
doi: 10.1089/scd.2009.0458
78 Wobus, A.M., and Boheler, K.R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85, 635-678 .
doi: 10.1152/physrev.00054.2003
79 Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., . (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766-770 .
doi: 10.1038/nature07863
80 Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., . (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1, 46-54 .
doi: 10.1093/jmcb/mjp003
81 Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39-49 .
doi: 10.1016/j.stem.2007.05.012
82 Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, II, and Thomson, J.A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797-801 .
doi: 10.1126/science.1172482
83 Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., . (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 .
doi: 10.1126/science.1151526
84 Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., . (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. CellS tem Cell 3, 475-479 .
doi: 10.1016/j.stem.2008.10.002
[1] Ruimin Xu, Chong Li, Xiaoyu Liu, Shaorong Gao. Insights into epigenetic patterns in mammalian early embryos[J]. Protein Cell, 2021, 12(1): 7-28.
[2] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[3] Rui Fu, Dawei Yu, Jilong Ren, Chongyang Li, Jing Wang, Guihai Feng, Xuepeng Wang, Haifeng Wan, Tianda Li, Libin Wang, Ying Zhang, Tang Hai, Wei Li, Qi Zhou. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107.
[4] Xuemei Fu, Shouhai Wu, Bo Li, Yang Xu, Jingfeng Liu. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
[5] Meiyan Wang, Lei Zhang, Fred H. Gage. Modeling neuropsychiatric disorders using human induced pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 45-59.
[6] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[7] Yaqin Du, Ting Wang, Jun Xu, Chaoran Zhao, Haibo Li, Yao Fu, Yaxing Xu, Liangfu Xie, Jingru Zhao, Weifeng Yang, Ming Yin, Jinhua Wen, Hongkui Deng. Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg−/− mice[J]. Protein Cell, 2019, 10(1): 31-42.
[8] Yi Yang, Han Wu, Xiangjin Kang, Yanhui Liang, Ting Lan, Tianjie Li, Tao Tan, Jiangyun Peng, Quanjun Zhang, Geng An, Yali Liu, Qian Yu, Zhenglai Ma, Ying Lian, Boon Seng Soh, Qingfeng Chen, Ping Liu, Yaoyong Chen, Xiaofang Sun, Rong Li, Xiumei Zhen, Ping Liu, Yang Yu, Xiaoping Li, Yong Fan. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs[J]. Protein Cell, 2018, 9(3): 283-297.
[9] Xiaojie Ma, Linghao Kong, Saiyong Zhu. Reprogramming cell fates by small molecules[J]. Protein Cell, 2017, 8(5): 328-348.
[10] Yuewen Tang, Lin Cheng. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury[J]. Protein Cell, 2017, 8(4): 273-283.
[11] Haley Vaseghi, Jiandong Liu, Li Qian. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell, 2017, 8(10): 724-734.
[12] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[13] Bo Peng,Hui Li,Xuan-Xian Peng. Functional metabolomics: from biomarker discovery to metabolome reprogramming[J]. Protein Cell, 2015, 6(9): 628-637.
[14] Sun-Ku Chung,Shengyun Zhu,Yang Xu,Xuemei Fu. Functional analysis of the acetylation of human p53 in DNA damage responses[J]. Protein Cell, 2014, 5(7): 544-551.
[15] Yuran Song,Tang Hai,Ying Wang,Runfa Guo,Wei Li,Liu Wang,Qi Zhou. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor—m-carboxycinnamic acid bishydroxamide (CBHA)[J]. Protein Cell, 2014, 5(5): 382-393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed