Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (9) : 641-647    https://doi.org/10.1007/s13238-012-2079-5      PMID: 22926765
MINI-REVIEW
Mass spectrometry based proteomics, background, status and future needs
Peter Roepstorff()
Department of Biochemistry and Molecular Biology, University of Southern Denmark Campusvej 55, DK 5230 Odense M, Denmark
 Download: PDF(376 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An overview of the background for proteomics and a description of the present state of art are given with a description of the main strategies in proteomics. The advantages and limitations of the two major strategies, 2D-gel based and LC-MS based, are discussed and a combination for the two, CeLC-MS is described. A number of challenging problems which have been solved using different proteomics strategies including the advantage of organell enrichment or modifications specific peptide isolation to get deeper into the proteome are described. Finally the present status and future needs discussed.

Keywords proteomics      2D-PAGE      LC-MS      isoforms      phosphorylation     
Corresponding Author(s): Roepstorff Peter,Email:roe@bmb.sdu.dk   
Issue Date: 01 September 2012
 Cite this article:   
Peter Roepstorff. Mass spectrometry based proteomics, background, status and future needs[J]. Prot Cell, 2012, 3(9): 641-647.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2079-5
https://academic.hep.com.cn/pac/EN/Y2012/V3/I9/641
1 Ahlf, D.R, Compton, P.D., Tran, J.C., Early, B.P, Thomas, P.M., and Kelleher, N.L. (2012). Evaluation of the compact high-field orbitrap for top-down proteomics of human cells. J Proteome Res . (In press).
doi: 10.1021/pr3004216
2 Bauw, G., Vandamme, J., Puype, M., Vandekerchove, J., Gesser, B., Ratz, G.P., Lauritsen, J.B., and Celis, J.E. (1989). Protein- electroblotting and protein-microsequencing strategies in generating protein data-bases from two-dimensional gels. (computerized protein data-bases human genome sequencing). Proc Natl Acad Sci U S A 86, 7701-7705 .
doi: 10.1073/pnas.86.20.7701
3 Boyne II, M.T., Pesavento, J.J., Mizzen, C.A., and Kelleher, N.L. (2006). Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res 5, 248-253 .
doi: 10.1021/pr050269n
4 Engholm-Keller, K., Hansen, T.A., Palmisano, G., and Larsen, M.R. (2011). Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10, 5383-5397 .
5 Feistner, G.J., H?jrup, P., Evans, C.J., Barofsky, D.F., Faull, K.F., and Roepstorff, P. (1989). Mass spectrometric charting of bovine posterior/interior pituitary peptides. Proc Natl Acad Sci U S A 86, 6013-6017 .
doi: 10.1073/pnas.86.16.6013
6 Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. (1989). Electrospray ionization for the mass spectrometry of large biomolecules. Science 246, 64-71 .
doi: 10.1126/science.2675315
7 Henzel, W.J., Billeci, T.M., Stults, J.T., and Wong, S.C. (1993). Identifying proteins from 2-dimensional gels by molecular mass searching of peptide-fragments in protein sequence databases. Proc Natl Acad Sci U S A 90, 5011-5015 .
doi: 10.1073/pnas.90.11.5011
8 James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun 195, 58-64 .
doi: 10.1006/bbrc.1993.2009
9 Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60, 1299-2301 .
doi: 10.1021/ac00171a028
10 Mann, M., H?jrup, P., and Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22, 338-345 .
doi: 10.1002/bms.1200220605
11 Mann, M., and Wilm, M. (1994). Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390-4399 .
doi: 10.1021/ac00096a002
12 Mann, M., and Jensen, O.N. (2003). Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255-261 .
doi: 10.1038/nbt0303-255
13 Larsen, T.R., Bache, N., Gramsbergen, J.B., and Roepstorff, P. (2011). Identification of nitrotyrosine containing peptides using combined fractional diagonal chromatography (COFRADIC) and off-line nano-LC-MALDI. J Am Soc Mass Spectrom 22, 989-996 .
doi: 10.1007/s13361-011-0095-y
14 Laugesen, S., Bak-Jensen, K.S., H?gglund, P., Henriksen, A., Finnie, C., Svensson, B., and Roepstorff, P. (2007). Barley peroxidase isozymes.Expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Intl J Mass Spectrometry 268, 244-253 .
doi: 10.1016/j.ijms.2007.06.003
15 Nogueira, F.C., Palmisano, G., Soares, E.L., Shah, M., Soares, A.A., Roepstorff, P., Campos, F.A., and Domont, G.B. (2012). Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. J Proteomics 75, 1933-1939 .
doi: 10.1016/j.jprot.2012.01.002
16 Pappin, D.J.C., H?jrup, P., and Bleasby, A.J. (1993) Rapid identification of proteins by peptide-mass finger printing. Curr Biol 3, 327-332
doi: 10.1016/0960-9822(93)90195-T
17 Schi?tt, M., Rogowska-Wrzesinska, A., Roepstorff, P., and Boomsma, J.J. (2010). Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol 8, 156-168 .
doi: 10.1186/1741-7007-8-156
18 Wilkins, M.R., Pasquali, C., Appel, R.D., Ou, K., Golaz, O., Sanchez, J.C., Yan, J.X., Gooley, A.A., Hughes, G., Humphery-Smith, I., . (1996). From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14, 61-65 .
doi: 10.1038/nbt0196-61
19 Verano-Braga, T., Schw?mmle, V., Sylvester, M., Passos-Silva, D.G., Peluso, A.A., Etelvino, G.M., Santos, R.A., and Roepstorff, P. (2012). Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-3381 .
doi: 10.1021/pr3001755
20 Zhao, Y., and Jensen, O.N. (2009). Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9, 4632-4641 .
doi: 10.1002/pmic.200900398
[1] Mi Li, Hong-Bing Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response[J]. Protein Cell, 2020, 11(8): 584-599.
[2] Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594.
[3] Xiaowen Zheng, Feng Chen, Qian Zhang, Yulan Liu, Peng You, Shan Sun, Jiuxiang Lin, Ning Chen. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease[J]. Protein Cell, 2017, 8(9): 686-695.
[4] Xing Guo, Xiuliang Huang, Mark J. Chen. Reversible phosphorylation of the 26S proteasome[J]. Protein Cell, 2017, 8(4): 255-272.
[5] Yong Zeng,Fei-Yan Deng,Wei Zhu,Lan Zhang,Hao He,Chao Xu,Qing Tian,Ji-Gang Zhang,Li-Shu Zhang,Hong-Gang Hu,Hong-Wen Deng. Mass spectrometry based proteomics profiling of human monocytes[J]. Protein Cell, 2017, 8(2): 123-133.
[6] Mengqi Lv,Chongyuan Wang,Fudong Li,Junhui Peng,Bin Wen,Qingguo Gong,Yunyu Shi,Yajun Tang. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38.
[7] Xuelin Zhang,Yang Wang,Pingsheng Liu. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease[J]. Protein Cell, 2017, 8(1): 4-13.
[8] Yufei Yang,Mo Hu,Kaiwen Yu,Xiangmei Zeng,Xiaoyun Liu. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions[J]. Protein Cell, 2015, 6(4): 265-274.
[9] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[10] Linlin Zhang,Shanshan Liu,Ningning Liu,Yong Zhang,Min Liu,Dengwen Li,Edward Seto,Tso-Pang Yao,Wenqing Shui,Jun Zhou. Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity[J]. Protein Cell, 2015, 6(1): 42-54.
[11] Jiawen Wang,Dongyuan Lü,Debin Mao,Mian Long. Mechanomics: an emerging field between biology and biomechanics[J]. Protein Cell, 2014, 5(7): 518-531.
[12] Hui Yang,Hongbing Wang. Signaling control of the constitutive androstane receptor (CAR)[J]. Protein Cell, 2014, 5(2): 113-123.
[13] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[14] Jiangtao Guo, Xuepeng Wei, Mei Li, Xiaowei Pan, Wenrui Chang, Zhenfeng Liu. Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae[J]. Prot Cell, 2013, 4(8): 607-619.
[15] Miao Feng, Zhanyu Ding, Liang Xu, Liangliang Kong, Wenjia Wang, Shi Jiao, Zhubing Shi, Mark I. Greene, Yao Cong, Zhaocai Zhou. Structural and biochemical studies of RIG-I antiviral signaling[J]. Prot Cell, 2013, 4(2): 142-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed