Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (12) : 911-920    https://doi.org/10.1007/s13238-012-2097-3      PMID: 23136066
REVIEW
Intersection of autophagy with pathways of antigen presentation
Natalie L. Patterson, Justine D. Mintern()
Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
 Download: PDF(351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.

Keywords autophagy      antigen presentation      antigen presenting cells      dendritic cells      MHCI      MHCII     
Corresponding Author(s): Mintern Justine D.,Email:jmintern@unimelb.edu.au   
Issue Date: 01 December 2012
 Cite this article:   
Natalie L. Patterson,Justine D. Mintern. Intersection of autophagy with pathways of antigen presentation[J]. Prot Cell, 2012, 3(12): 911-920.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2097-3
https://academic.hep.com.cn/pac/EN/Y2012/V3/I12/911
1 Anand, P.K., Tait, S.W., Lamkanfi, M., Amer, A.O., Nunez, G., Pages, G., Pouyssegur, J., McGargill, M.A., Green, D.R., and Kanneganti, T.D. (2011). TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 286, 42981-42991 .
doi: 10.1074/jbc.M111.310599
2 Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124, 903-913 .
doi: 10.1083/jcb.124.6.903
3 Benko, S., Philpott, D.J., and Girardin, S.E. (2008). The microbial and danger signals that activate Nod-like receptors. Cytokine 43, 368-373 .
doi: 10.1016/j.cyto.2008.07.013
4 Bevan, M.J. (1976). Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143, 1283-1288 .
doi: 10.1084/jem.143.5.1283
5 Blommaart, E.F., Krause, U., Schellens, J.P., Vreeling-Sindelarova, H., and Meijer, A.J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243, 240-246 .
doi: 10.1111/j.1432-1033.1997.0240a.x
6 Burman, C., and Ktistakis, N.T. (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584, 1302-1312 .
doi: 10.1016/j.febslet.2010.01.011
7 Comber, J.D., Robinson, T.M., Siciliano, N.A., Snook, A.E., and Eisenlohr, L.C. (2011). Functional macroautophagy induction by influenza A virus without a contribution to major histocompatibility complex class II-restricted presentation. J Virol 85, 6453-6463 .
doi: 10.1128/JVI.02122-10
8 Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D.J., Campbell, B.J., Jewell, D., and Simmons, A. (2010). NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16, 90-97 .
doi: 10.1038/nm.2069
9 De Luca, A., Iannitti, R.G., Bozza, S., Beau, R., Casagrande, A., D'Angelo, C., Moretti, S., Cunha, C., Giovannini, G., Massi-Benedetti, C., . (2012). CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J Clin Invest 122, 1816-1831 .
doi: 10.1172/JCI60862
10 Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G., and Deretic, V. (2008). Toll-like receptors control autophagy. EMBO J 27, 1110-1121 .
doi: 10.1038/emboj.2008.31
11 Dengjel, J., Schoor, O., Fischer, R., Reich, M., Kraus, M., Muller, M., Kreymborg, K., Altenberend, F., Brandenburg, J., Kalbacher, H., . (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102, 7922-7927 .
doi: 10.1073/pnas.0501190102
12 Dorfel, D., Appel, S., Grunebach, F., Weck, M.M., Muller, M.R., Heine, A., and Brossart, P. (2005). Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105, 3199-3205 .
doi: 10.1182/blood-2004-09-3556
13 English, L., Chemali, M., Duron, J., Rondeau, C., Laplante, A., Gingras, D., Alexander, D., Leib, D., Norbury, C., Lippe, R., . (2009). Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10, 480-487 .
doi: 10.1038/ni.1720
14 Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766 .
doi: 10.1016/j.cell.2004.11.038
15 Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L., and Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181, 497-510 .
doi: 10.1083/jcb.200712064
16 Harris, J., De Haro, S.A., Master, S.S., Keane, J., Roberts, E.A., Delgado, M., and Deretic, V. (2007). T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505-517 .
doi: 10.1016/j.immuni.2007.07.022
17 Jagannath, C., Lindsey, D.R., Dhandayuthapani, S., Xu, Y., Hunter, R.L., Jr., and Eissa, N.T. (2009). Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15, 267-276 .
doi: 10.1038/nm.1928
18 Jia, W., and He, Y.W. (2011). Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186, 5313-5322 .
doi: 10.4049/jimmunol.1002404
19 Joffre, O.P., Segura, E., Savina, A., and Amigorena, S. (2012). Cross-presentation by dendritic cells. Nat Rev Immunol 12, 557-569 .
doi: 10.1038/nri3254
20 Johnstone, C., Ramos, M., Garcia-Barreno, B., Lopez, D., Melero, J.A., and Del Val, M. (2012). Exogenous, TAP-independent lysosomal presentation of a respiratory syncytial virus CTL epitope. Immunol Cell Biol . (In Press).
doi: 10.1038/icb.2012.43
21 Jung, C.H., Jun, C.B., Ro, S.H., Kim, Y.M., Otto, N.M., Cao, J., Kundu, M., and Kim, D.H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20, 1992-2003 .
doi: 10.1091/mbc.E08-12-1249
22 Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS Lett 584, 1287-1295 .
doi: 10.1016/j.febslet.2010.01.017
23 Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19, 5720-5728 .
doi: 10.1093/emboj/19.21.5720
24 Kasai, M., Tanida, I., Ueno, T., Kominami, E., Seki, S., Ikeda, T., and Mizuochi, T. (2009). Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J Immunol 183, 7278-7285 .
doi: 10.4049/jimmunol.0804087
25 Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., . (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-545 .
doi: 10.1016/S1534-5807(03)00296-X
26 Klionsky, D.J., and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15, 1-32 .
doi: 10.1146/annurev.cellbio.15.1.1
27 Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., . (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434 .
doi: 10.1083/jcb.200412022
28 Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 .
doi: 10.1038/nature03029
29 Lee, H.K., Mattei, L.M., Steinberg, B.E., Alberts, P., Lee, Y.H., Chervonsky, A., Mizushima, N., Grinstein, S., and Iwasaki, A. (2010). In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227-239 .
doi: 10.1016/j.immuni.2009.12.006
30 Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42 .
doi: 10.1016/j.cell.2007.12.018
31 Li, B., Lei, Z., Lichty, B.D., Li, D., Zhang, G.M., Feng, Z.H., Wan, Y., and Huang, B. (2010). Autophagy facilitates major histocompatibility complex class I expression induced by IFN-gamma in B16 melanoma cells. Cancer Immunol Immunother 59, 313-321 .
32 Li, H., Li, Y., Jiao, J., and Hu, H.M. (2011a). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature nanotechnology 6, 645-650 .
doi: 10.1038/nnano.2011.153
33 Li, W., Yang, Q., and Mao, Z. (2011b). Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 68, 749-763 .
doi: 10.1007/s00018-010-0565-6
34 Li, Y., Wang, L.X., Yang, G., Hao, F., Urba, W.J., and Hu, H.M. (2008). Efficient cross-presentation depends on autophagy in tumor cells. Cancer research 68, 6889-6895 .
doi: 10.1158/0008-5472.CAN-08-0161
35 McLeod, I.X., Zhou, X., Li, Q.J., Wang, F., and He, Y.W. (2011). The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J Immunol 187, 5051-5061 .
doi: 10.4049/jimmunol.1100710
36 Mintern, J.D., and Villadangos, J.A. (2012). Autophagy and mechanisms of effective immunity. Front Immunol 3, 60.
doi: 10.3389/fimmu.2012.00060
37 Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398 .
doi: 10.1038/26506
38 Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., and Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15, 1101-1111 .
doi: 10.1091/mbc.E03-09-0704
39 Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N., and Klein, L. (2008). Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396-400 .
doi: 10.1038/nature07208
40 Nimmerjahn, F., Milosevic, S., Behrends, U., Jaffee, E.M., Pardoll, D.M., Bornkamm, G.W., and Mautner, J. (2003). Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33, 1250-1259 .
doi: 10.1002/eji.200323730
41 Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216 .
doi: 10.1038/35056522
42 Orenstein, S.J., and Cuervo, A.M. (2010). Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21, 719-726 .
doi: 10.1016/j.semcdb.2010.02.005
43 Orsi, A., Razi, M., Dooley, H.C., Robinson, D., Weston, A.E., Collinson, L.M., and Tooze, S.A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23, 1860-1873 .
doi: 10.1091/mbc.E11-09-0746
44 Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., and Munz, C. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593-596 .
doi: 10.1126/science.1104904
45 Poyet, J.L., Srinivasula, S.M., Tnani, M., Razmara, M., Fernandes-Alnemri, T., and Alnemri, E.S. (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276, 28309-28313 .
doi: 10.1074/jbc.C100250200
46 Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R.N., Gilpin, C., and Levine, B. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931-946 .
doi: 10.1016/j.cell.2006.12.044
47 Riedel, A., Nimmerjahn, F., Burdach, S., Behrends, U., Bornkamm, G.W., and Mautner, J. (2008). Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. Eur J Immunol 38, 2090-2095 .
doi: 10.1002/eji.200737900
48 Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., . (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106, 20842-20846 .
doi: 10.1073/pnas.0911267106
49 Saitoh, T., Fujita, N., Jang, M.H., Uematsu, S., Yang, B.G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., . (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268 .
doi: 10.1038/nature07383
50 Sanjuan, M.A., Dillon, C.P., Tait, S.W., Moshiach, S., Dorsey, F., Connell, S., Komatsu, M., Tanaka, K., Cleveland, J.L., Withoff, S., . (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253-1257 .
doi: 10.1038/nature06421
51 Schmid, D., Pypaert, M., and Munz, C. (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79-92 .
doi: 10.1016/j.immuni.2006.10.018
52 Seglen, P.O., and Gordon, P.B. (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79, 1889-1892 .
doi: 10.1073/pnas.79.6.1889
53 Segura, E., and Villadangos, J.A. (2011). A modular and combinatorial view of the antigen cross-presentation pathway in dendritic cells. Traffic 12, 1677-1685 .
doi: 10.1111/j.1600-0854.2011.01254.x
54 Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., and Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. Embo J 18, 5234-5241 .
doi: 10.1093/emboj/18.19.5234
55 Sou, Y.S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., . (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19, 4762-4775 .
doi: 10.1091/mbc.E08-03-0309
56 Sukseree, S., Mildner, M., Rossiter, H., Pammer, J., Zhang, C.F., Watanapokasin, R., Tschachler, E., and Eckhart, L. (2012). Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS One 7, e38933.
doi: 10.1371/journal.pone.0038933
57 Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581, 2156-2161 .
doi: 10.1016/j.febslet.2007.01.096
58 Suzuki, T., Franchi, L., Toma, C., Ashida, H., Ogawa, M., Yoshikawa, Y., Mimuro, H., Inohara, N., Sasakawa, C., and Nunez, G. (2007). Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3, e111.
doi: 10.1371/journal.ppat.0030111
59 Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376 .
doi: 10.1146/annurev.immunol.21.120601.141126
60 Tanida, I., Ueno, T., and Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36, 2503-2518 .
doi: 10.1016/j.biocel.2004.05.009
61 Tey, S.K., and Khanna, R. (2012). Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood 120, 994-1004 .
doi: 10.1182/blood-2012-01-402404
62 Travassos, L.H., Carneiro, L.A., Ramjeet, M., Hussey, S., Kim, Y.G., Magalhaes, J.G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., . (2010). Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11, 55-62 .
doi: 10.1038/ni.1823
63 Uhl, M., Kepp, O., Jusforgues-Saklani, H., Vicencio, J.M., Kroemer, G., and Albert, M.L. (2009). Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell death and differentiation 16, 991-1005 .
doi: 10.1038/cdd.2009.8
64 Weidberg, H., Shvets, E., and Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80, 125-156 .
doi: 10.1146/annurev-biochem-052709-094552
65 Willinger, T., and Flavell, R.A. (2012). Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci U S A 109, 8670-8675 .
doi: 10.1073/pnas.1205305109
66 Xu, Y., Jagannath, C., Liu, X.D., Sharafkhaneh, A., Kolodziejska, K.E., and Eissa, N.T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144 .
doi: 10.1016/j.immuni.2007.05.022
67 Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822 .
doi: 10.1038/ncb0910-814
68 Zhou, D., Li, P., Lin, Y., Lott, J.M., Hislop, A.D., Canaday, D.H., Brutkiewicz, R.R., and Blum, J.S. (2005). Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22, 571-581 .
doi: 10.1016/j.immuni.2005.03.009
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[3] Zhi-Dong Liu,Su Zhang,Jian-Jin Hao,Tao-Rong Xie,Jian-Sheng Kang. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
[4] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[5] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[6] Haisheng Yu,Peng Zhang,Xiangyun Yin,Zhao Yin,Quanxing Shi,Ya Cui,Guanyuan Liu,Shouli Wang,Pier Paolo Piccaluga,Taijiao Jiang,Liguo Zhang. Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset[J]. Protein Cell, 2015, 6(4): 297-306.
[7] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[8] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[9] Jianhua Xiong. Atg7 in development and disease: panacea or Pandora’s Box?[J]. Protein Cell, 2015, 6(10): 722-734.
[10] Xiaojuan Chen,Kai Wang,Yaling Xing,Jian Tu,Xingxing Yang,Qian Zhao,Kui Li,Zhongbin Chen. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity[J]. Protein Cell, 2014, 5(12): 912-927.
[11] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[12] Musheng Bao, Yong-Jun Liu. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells[J]. Prot Cell, 2013, 4(1): 40-52.
[13] Hua Cheng, Tong Ren, Shao-cong Sun. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax[J]. Prot Cell, 2012, 3(8): 581-589.
[14] Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
[15] Claire Gordy, You-Wen He. The crosstalk between autophagy and apoptosis: where does this lead?[J]. Prot Cell, 2012, 3(1): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed