Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (4) : 271-277    https://doi.org/10.1007/s13238-012-2922-8      PMID: 22528751
MINI-REVIEW
The genomic stability of induced pluripotent stem cells
Zhao Chen, Tongbiao Zhao, Yang Xu()
Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
 Download: PDF(183 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.

Keywords induced pluripotent stem cells      reprogramming      genetic and epigenetic abnormalities     
Corresponding Author(s): Xu Yang,Email:yangxu@ucsd.edu   
Issue Date: 01 April 2012
 Cite this article:   
Zhao Chen,Tongbiao Zhao,Yang Xu. The genomic stability of induced pluripotent stem cells[J]. Prot Cell, 2012, 3(4): 271-277.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2922-8
https://academic.hep.com.cn/pac/EN/Y2012/V3/I4/271
1 Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bili?, J., Pekarik, V., Tiscornia, G., . (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276-1284 .
doi: 10.1038/nbt.1503
2 Agarwal, S., Loh, Y.H., McLoughlin, E.M., Huang, J., Park, I.H., Miller, J.D., Huo, H., Okuka, M., Dos Reis, R.M., Loewer, S., . (2010). Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292-296 .
doi: 10.1038/nature08792
3 Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702 .
doi: 10.1126/science.1154884
4 Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126-140 .
doi: 10.1101/gad.224503
5 Banito, A., Rashid, S.T., Acosta, J.C., Li, S., Pereira, C.F., Geti, I., Pinho, S., Silva, J.C., Azuara, V., Walsh, M., . (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23, 2134-2139 .
doi: 10.1101/gad.1811609
6 Bass, A.J., Watanabe, H., Mermel, C.H., Yu, S., Perner, S., Verhaak, R.G., Kim, S.Y., Wardwell, L., Tamayo, P., Gat-Viks, I., . (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41, 1238-1242 .
doi: 10.1038/ng.465
7 Bedell, M.A., Jenkins, N.A., and Copeland, N.G. (1997a). Mouse models of human disease. Part I: techniques and resources for genetic analysis in mice. Genes Dev 11, 1-10 .
doi: 10.1101/gad.11.1.1
8 Bedell, M.A., Largaespada, D.A., Jenkins, N.A., and Copeland, N.G. (1997b). Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 11, 11-43 .
doi: 10.1101/gad.11.1.11
9 Boland, M.J., Hazen, J.L., Nazor, K.L., Rodriguez, A.R., Gifford, W., Martin, G., Kupriyanov, S., and Baldwin, K.K. (2009). Adult mice generated from induced pluripotent stem cells. Nature 461, 91-94 .
doi: 10.1038/nature08310
10 Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., . (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956 .
doi: 10.1016/j.cell.2005.08.020
11 Brennand, K.J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., Li, Y., Mu, Y., Chen, G., Yu, D., . (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225 .
doi: 10.1038/nature09915
12 Carvajal-Vergara, X., Sevilla, A., D’Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., . (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808-812 .
doi: 10.1038/nature09005
13 Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655 .
doi: 10.1016/S0092-8674(03)00392-1
14 Chiou, S.H., Wang, M.L., Chou, Y.T., Chen, C.J., Hong, C.F., Hsieh, W.J., Chang, H.T., Chen, Y.S., Lin, T.W., Hsu, H.S., . (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70, 10433-10444 .
doi: 10.1158/0008-5472.CAN-10-2638
15 Dang, C.V., O’Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C., and Li, F. (2006). The c-Myc target gene network. Semin Cancer Biol 16, 253-264 .
doi: 10.1016/j.semcancer.2006.07.014
16 Dang, D.T., Pevsner, J., and Yang, V.W. (2000). The biology of the mammalian Krüppel-like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121 .
doi: 10.1016/S1357-2725(00)00059-5
17 Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., . (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218-1221 .
doi: 10.1126/science.1158799
18 Ebert, A.D., Yu, J., Rose, F.F. Jr, Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277-280 .
doi: 10.1038/nature07677
19 Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., Hock, H., and Hochedlinger, K. (2009). Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41, 968-976 .
doi: 10.1038/ng.428
20 Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., and Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467-2474 .
doi: 10.1634/stemcells.2008-0317
21 Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., . (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71-79 .
doi: 10.1016/j.stem.2009.12.001
22 Esteban, M.A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., . (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284, 17634-17640 .
doi: 10.1074/jbc.M109.008938
23 Fu, X., and Xu, Y. (2011). Self-renewal and scalability of human embryonic stem cells for human therapy. Regen Med 6, 327-334 .
doi: 10.2217/rme.11.18
24 Gidekel, S., Pizov, G., Bergman, Y., and Pikarsky, E. (2003). Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361-370 .
doi: 10.1016/S1535-6108(03)00270-8
25 Gore, A., Li, Z., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., . (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63-67 .
doi: 10.1038/nature09805
26 Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., . (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250-264 .
doi: 10.1016/j.cell.2008.03.028
27 Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595-601 .
doi: 10.1038/nature08592
28 Hart, A.H., Hartley, L., Parker, K., Ibrahim, M., Looijenga, L.H., Pauchnik, M., Chow, C.W., and Robb, L. (2005). The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 104, 2092-2098 .
doi: 10.1002/cncr.21435
29 Hochedlinger, K., Yamada, Y., Beard, C., and Jaenisch, R. (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465-477 .
doi: 10.1016/j.cell.2005.02.018
30 Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132-1135 .
doi: 10.1038/nature08235
31 Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and Melton, D.A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26, 795-797 .
doi: 10.1038/nbt1418
32 Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., N?rv?, E., Ng, S., Sourour, M., H?m?l?inen, R., Olsson, C., . (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58-62 .
doi: 10.1038/nature09871
33 Ichida, J.K., Blanchard, J., Lam, K., Son, E.Y., Chung, J.E., Egli, D., Loh, K.M., Carter, A.C., Di Giorgio, F.P., Koszka, K., . (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491-503 .
doi: 10.1016/j.stem.2009.09.012
34 Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van Gorp, S., Nazor, K.L., Boscolo, F.S., . (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216-220 .
35 Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., Feldman, O., Gepstein, A., Arbel, G., Hammerman, H., . (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225-229 .
doi: 10.1038/nature09747
36 Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5, 135-138 .
doi: 10.1016/j.stem.2009.07.001
37 Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Belmonte, J.C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140-1144 .
doi: 10.1038/nature08311
38 Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., . (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646-650 .
doi: 10.1038/nature07061
39 Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., . (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467, 285-290 .
doi: 10.1038/nature09342
40 Ko, L.J., and Prives, C. (1996). p53: puzzle and paradigm. Genes Dev 10, 1054-1072 .
doi: 10.1101/gad.10.9.1054
41 Lake, B.B., Fink, J., Klemetsaune, L., Fu, X., Jeffers, J.R., Zambetti, G.P., and Xu, Y. (2012). Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing Puma. Stem Cells 2012Feb6.
doi: 10.1002/stem.1054. [Epub ahead of print] pmid:10.1002/stem.1054" target="blank">
doi: 10.1002/stem.1054
pmid:10.1002/stem.1054" target="blank">
doi: 10.1002/stem.1054
42 Laurent, L.C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C., Harness, J.V., Lee, S., Barrero, M.J., . (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106-118 .
doi: 10.1016/j.stem.2010.12.003
43 Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat, Y.M., Menon, J., Shimizu, F., Viale, A., . (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402-406 .
doi: 10.1038/nature08320
44 Levings, P.P.,McGarry, S.V., Currie, T.P., Nickerson, D.M., McClellan, S., Ghivizzani, S.C., Steindler, D.A., and Gibbs, C.P. (2009). Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 69, 5648-5655 .
doi: 10.1158/0008-5472.CAN-08-3580
45 Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M.A., and Serrano, M. (2009a). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139 .
doi: 10.1038/nature08290
46 Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S. (2009b). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4, 16-19 .
doi: 10.1016/j.stem.2008.11.014
47 Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Sch?ler, H.R., Hayek, A., and Ding, S. (2009c). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27, 2992-3000 .
48 Li, Y., Zhang, Q., Yin, X., Yang, W., Du, Y., Hou, P., Ge, J., Liu, C., Zhang, W., Zhang, X., . (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21, 196-204 .
doi: 10.1038/cr.2010.142
49 Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H.S., Hao, E., Hayek, A., . (2009). A chemical platform for improved induction of human iPSCs. Nat Methods 6, 805-808 .
doi: 10.1038/nmeth.1393
50 Lin, T., Chao, C., Saito, S., Mazur, S.J., Murphy, M.E., Appella, E., and Xu, Y. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7, 165-171 .
doi: 10.1038/ncb1211
51 Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., . (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68-73 .
doi: 10.1038/nature09798
52 Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., . (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221-225 .
doi: 10.1038/nature09879
53 Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., . (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587-590 .
doi: 10.1016/j.stem.2008.10.014
54 Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., . (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38, 431-440 .
doi: 10.1038/ng1760
55 Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., and Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340-345 .
doi: 10.1016/j.stem.2008.08.003
56 Marchetto, M.C., Carromeu, C., Acab, A., Yu, D., Yeo, G.W., Mu, Y., Chen, G., Gage, F.H., and Muotri, A.R. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527-539 .
doi: 10.1016/j.cell.2010.10.016
57 Marión, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Capetillo, O., Serrano, M., and Blasco, M.A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149-1153 .
doi: 10.1038/nature08287
58 Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., . (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9, 625-635 .
doi: 10.1038/ncb1589
59 Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J.C., Yakir, B., Clark, A.T., Plath, K., Lowry, W.E., and Benvenisty, N. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521-531 .
doi: 10.1016/j.stem.2010.07.017
60 Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642 .
doi: 10.1016/S0092-8674(03)00393-3
61 Moretti, A., Bellin, M., Welling, A., Jung, C.B., Lam, J.T., Bott-Flügel, L., Dorn, T., Goedel, A., H?hnke, C., Hofmann, F., . (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363, 1397-1409 .
doi: 10.1056/NEJMoa0908679
62 Newman, M.A., Thomson, J.M., and Hammond, S.M. (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549 .
doi: 10.1261/rna.1155108
63 Nguyen, H.N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., Kee, K., Schüle, B., Dolmetsch, R.E., Langston, W., . (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267-280 .
doi: 10.1016/j.stem.2011.01.013
64 Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376 .
doi: 10.1038/74199
65 Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317 .
doi: 10.1038/nature05934
66 Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008a). Disease-specific induced pluripotent stem cells. Cell 134, 877-886 .
doi: 10.1016/j.cell.2008.07.041
67 Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008b). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141-146 .
doi: 10.1038/nature06534
68 Peng, S., Maihle, N.J., and Huang, Y. (2010). Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29, 2153-2159 .
doi: 10.1038/onc.2009.500
69 Pesce, M., and Sch?ler, H.R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271-278 .
doi: 10.1634/stemcells.19-4-271
70 Pick, M., Stelzer, Y., Bar-Nur, O., Mayshar, Y., Eden, A., and Benvenisty, N. (2009). Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27, 2686-2690 .
doi: 10.1002/stem.205
71 Piestun, D., Kochupurakkal, B.S., Jacob-Hirsch, J., Zeligson, S., Koudritsky, M., Domany, E., Amariglio, N., Rechavi, G., and Givol, D. (2006). Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem Biophys Res Commun 343, 279-285 .
doi: 10.1016/j.bbrc.2006.02.152
72 Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., . (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28, 848-855 .
doi: 10.1038/nbt.1667
73 Rowland, B.D., and Peeper, D.S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6, 11-23 .
doi: 10.1038/nrc1780
74 Sarig, R., Rivlin, N., Brosh, R., Bornstein, C., Kamer, I., Ezra, O., Molchadsky, A., Goldfinger, N., Brenner, O., and Rotter, V. (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207, 2127-2140 .
doi: 10.1084/jem.20100797
75 Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Sch?ler, H.R., and Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568-574 .
doi: 10.1016/j.stem.2008.10.004
76 Song, H., Chung, S.K., and Xu, Y. (2010). Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6, 80-89 .
doi: 10.1016/j.stem.2009.11.016
77 Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., Kono, T., Shioda, T., and Hochedlinger, K. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175-181 .
doi: 10.1038/nature09017
78 Stadtfeld, M., Brennand, K., and Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890-894 .
doi: 10.1016/j.cub.2008.05.010
79 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 .
doi: 10.1016/j.cell.2007.11.019
80 Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 .
doi: 10.1016/j.cell.2006.07.024
81 Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 .
doi: 10.1126/science.282.5391.1145
82 Tiscornia, G., Vivas, E.L., and Belmonte, J.C. (2011). Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 17, 1570-1576 .
doi: 10.1038/nm.2504
83 Tong, M., Lv, Z., Liu, L., Zhu, H., Zheng, Q.Y., Zhao, X.Y., Li, W., Wu, Y.B., Zhang, H.J., Wu, H.J., . (2011). Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Res 21, 1634-1637 .
doi: 10.1038/cr.2011.143
84 Utikal, J., Maherali, N., Kulalert, W., and Hochedlinger, K. (2009a). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122, 3502-3510 .
doi: 10.1242/jcs.054783
85 Utikal, J., Polo, J.M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R.M., Khalil, A., Rheinwald, J.G., and Hochedlinger, K. (2009b). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145-1148
doi: 10.1038/nature08285
86 Viswanathan, S.R., Daley, G.Q., and Gregory, R.I. (2008). Selective blockade of microRNA processing by Lin28. Science 320, 97-100 .
doi: 10.1126/science.1154040
87 Viswanathan, S.R., Powers, J.T., Einhorn, W., Hoshida, Y., Ng, T.L., Toffanin, S., O’Sullivan, M., Lu, J., Phillips, L.A., Lockhart, V.L., . (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41, 843-848 .
doi: 10.1038/ng.392
88 Wu, Y., Zhang, Y., Mishra, A., Tardif, S.D., and Hornsby, P.J. (2010). Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Res 4, 180-188 .
doi: 10.1016/j.scr.2010.02.003
89 Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39-49 .
doi: 10.1016/j.stem.2007.05.012
90 Yazawa, M., Hsueh, B., Jia, X., Pasca, A.M., Bernstein, J.A., Hallmayer, J., and Dolmetsch, R.E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230-234 .
doi: 10.1038/nature09855
91 Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., . (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 .
doi: 10.1126/science.1151526
92 Yuan, X., Wan, H., Zhao, X., Zhu, S., Zhou, Q., and Ding, S. (2011). Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 29, 549-553 .
doi: 10.1002/stem.594
93 Zhang, J., Lian, Q., Zhu, G., Zhou, F., Sui, L., Tan, C., Mutalif, R.A., Navasankari, R., Zhang, Y., Tse, H.F., . (2011). A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31-45 .
doi: 10.1016/j.stem.2010.12.002
94 Zhao, T., and Xu, Y. (2010). p53 and stem cells: new developments and new concerns. Trends Cell Biol 20, 170-175 .
doi: 10.1016/j.tcb.2009.12.004
95 Zhao, T., Zhang, Z.N., Rong, Z., and Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature 474, 212-215 .
96 Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., . (2009). iPS cells produce viable mice through tetraploid complementation. Nature 461, 86-90 .
doi: 10.1038/nature08267
97 Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., . (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3, 475-479 .
doi: 10.1016/j.stem.2008.10.002
98 Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., and Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651-655 .
doi: 10.1016/j.stem.2010.11.015
[1] Ruimin Xu, Chong Li, Xiaoyu Liu, Shaorong Gao. Insights into epigenetic patterns in mammalian early embryos[J]. Protein Cell, 2021, 12(1): 7-28.
[2] Xuemei Fu, Shouhai Wu, Bo Li, Yang Xu, Jingfeng Liu. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
[3] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[4] Yaqin Du, Ting Wang, Jun Xu, Chaoran Zhao, Haibo Li, Yao Fu, Yaxing Xu, Liangfu Xie, Jingru Zhao, Weifeng Yang, Ming Yin, Jinhua Wen, Hongkui Deng. Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg−/− mice[J]. Protein Cell, 2019, 10(1): 31-42.
[5] Xiaojie Ma, Linghao Kong, Saiyong Zhu. Reprogramming cell fates by small molecules[J]. Protein Cell, 2017, 8(5): 328-348.
[6] Yuewen Tang, Lin Cheng. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury[J]. Protein Cell, 2017, 8(4): 273-283.
[7] Haley Vaseghi, Jiandong Liu, Li Qian. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell, 2017, 8(10): 724-734.
[8] Bo Peng,Hui Li,Xuan-Xian Peng. Functional metabolomics: from biomarker discovery to metabolome reprogramming[J]. Protein Cell, 2015, 6(9): 628-637.
[9] Yuran Song,Tang Hai,Ying Wang,Runfa Guo,Wei Li,Liu Wang,Qi Zhou. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor—m-carboxycinnamic acid bishydroxamide (CBHA)[J]. Protein Cell, 2014, 5(5): 382-393.
[10] Wen-Ting Guo,Xi-Wen Wang,Yangming Wang. Micro-management of pluripotent stem cells[J]. Protein Cell, 2014, 5(1): 36-47.
[11] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[12] Tao Wang, Stephen T. Warren, Peng Jin. Toward pluripotency by reprogramming: mechanisms and application[J]. Prot Cell, 2013, 4(11): 820-832.
[13] Jolene Ooi, Pentao Liu. Delineating nuclear reprogramming[J]. Prot Cell, 2012, 3(5): 329-345.
[14] Fei Yi, Guang-Hui Liu, Juan Carlos Izpisua Belmonte. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy[J]. Prot Cell, 2012, 3(4): 246-250.
[15] Suying Cao, Kyle Loh, Yangli Pei, Wei Zhang, Jianyong Han. Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality[J]. Prot Cell, 2012, 3(11): 834-845.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed