Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (1) : 69-79    https://doi.org/10.1007/s13238-013-0007-y      PMID: 24474203
RESEARCH ARTICLE
Genetic approach to track neural cell fate decisions using human embryonic stem cells
Xuemei Fu1,2,*(),Zhili Rong2,Shengyun Zhu1,2,Xiaocheng Wang2,Yang Xu2,Blue B. Lake2,*()
1. Shenzhen Children’s Hospital, Shenzhen 518026, China
2. Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
 Download: PDF(2597 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.

Keywords Nestin      knock-in      human embryonic stem cells      neural progenitor cells     
Corresponding Author(s): Xuemei Fu   
Issue Date: 16 May 2014
 Cite this article:   
Xuemei Fu,Zhili Rong,Shengyun Zhu, et al. Genetic approach to track neural cell fate decisions using human embryonic stem cells[J]. Protein Cell, 2014, 5(1): 69-79.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-0007-y
https://academic.hep.com.cn/pac/EN/Y2014/V5/I1/69
1 AasT, BorresenAL, GeislerS, Smith-SorensenB, JohnsenH, VarhaugJE, AkslenLA, LonningPE (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med2: 811-814
doi: 10.1038/nm0796-811
2 ChambersSM, FasanoCA, PapapetrouEP, TomishimaM, SadelainM, StuderL (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotech27: 275-280
doi: 10.1038/nbt.1529
3 CowanCA, KlimanskayaI, McMahonJ, AtienzaJ, WitmyerJ, ZuckerJP, WangS, MortonCC, McMahonAP, PowersD (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med350: 1353-1356
doi: 10.1056/NEJMsr040330
4 FuX, XuY (2011) Self-renewal and scalability of human embryonic stem cells for human therapy. Regen Med6: 327-334
doi: 10.2217/rme.11.18
5 HockemeyerD, WangH, KianiS, LaiCS, GaoQ, CassadyJP, CostGJ, ZhangL, SantiagoY, MillerJC (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol29: 731-734
doi: 10.1038/nbt.1927
6 IsraelMA, YuanSH, BardyC, ReynaSM, MuY, HerreraC, HefferanMP, Van GorpS, NazorKL, BoscoloFS (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature482: 216-220
7 ItsyksonP, IlouzN, TuretskyT, GoldsteinRS, PeraMF, FishbeinI, SegalM, ReubinoffBE (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci30: 24-36
doi: 10.1016/j.mcn.2005.05.004
8 JoannidesAJ, Fiore-HericheC, BattersbyAA, Athauda-ArachchiP, BouhonIA, WilliamsL, WestmoreK, KempPJ, CompstonA, AllenND (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells25: 731-737
doi: 10.1634/stemcells.2006-0562
9 KeyoungHM, RoyNS, BenraissA, LouissaintA Jr, SuzukiA, HashimotoM, RashbaumWK, OkanoH, GoldmanSA(2001) High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol19: 843-850
doi: 10.1038/nbt0901-843
10 KimJ-E, O'SullivanML, SanchezCA, HwangM, IsraelMA, BrennandK, DeerinckTJ, GoldsteinLSB, GageFH, EllismanMH (2011) Investigating synapse formation and function using human pluripotent stem cell-derived neurons. Proc Natl Acad Sci USA108: 3005-3010
doi: 10.1073/pnas.1007753108
11 LakeBB, FinkJ, KlemetsauneL, FuX, JeffersJR, ZambettiGP, XuY (2012) Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing puma. Stem Cells30: 888-897
doi: 10.1002/stem.1054
12 LeeG, KimH, ElkabetzY, Al ShamyG, PanagiotakosG, BarberiT, TabarV, StuderL (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol25: 1468-1475
doi: 10.1038/nbt1365
13 LenkaN, LuZJ, SasseP, HeschelerJ, FleischmannBK (2002) Quantitation and functional characterization of neural cells derived from ES cells using nestin enhancer-mediated targeting in vitro. J Cell Sci115: 1471-1485
14 LiuY, HanSS, WuY, TuohyTM, XueH, CaiJ, BackSA, ShermanLS, FischerI, RaoMS (2004) CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol276: 31-46
doi: 10.1016/j.ydbio.2004.08.018
15 LuoY, CaiJ, LiuY, XueH, ChrestFJ, WerstoRP, RaoM (2002) Microarray analysis of selected genes in neural stem and progenitor cells. J Neurochem83: 1481-1497
doi: 10.1046/j.1471-4159.2002.01260.x
16 MignoneJL, KukekovV, ChiangAS, SteindlerD, EnikolopovG (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol469: 311-324
doi: 10.1002/cne.10964
17 MorrisonSJ, WhitePM, ZockC, AndersonDJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell96: 737-749
doi: 10.1016/S0092-8674(00)80583-8
18 NoisaP, Urrutikoetxea-UriguenA, LiM, CuiW (2010) Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev6: 438-449
doi: 10.1007/s12015-010-9159-9
19 OrdonezMP, RobertsEA, KidwellCU, YuanSH, PlaistedWC, GoldsteinLS (2012) Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1. Hum Mol Genet21: 2651-2662
doi: 10.1093/hmg/dds090
20 PeljtoM, WichterleH (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol21: 43-51
doi: 10.1016/j.conb.2010.09.012
21 PlacantonakisDG, TomishimaMJ, LafailleF, DesbordesSC, Jia F SocciND, VialeA, LeeH, HarrisonN, TabarV (2009) BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells27: 521-532
doi: 10.1634/stemcells.2008-0884
22 ReubinoffBE, ItsyksonP, TuretskyT, PeraMF, ReinhartzE, ItzikA, Ben-HurT (2001) Neural progenitors from human embryonic stem cells. Nat Biotech19: 1134-1140
doi: 10.1038/nbt1201-1134
23 SawamotoK, YamamotoA, KawaguchiA, YamaguchiM, MoriK, GoldmanSA, OkanoH (2001) Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters. J Neurosci Res65: 220-227
doi: 10.1002/jnr.1145
24 SongH, HollsteinM, XuY (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol9: 573-580
doi: 10.1038/ncb1571
25 SongH, ChungS-K, XuY (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell6: 80-89
doi: 10.1016/j.stem.2009.11.016
26 UnternaehrerJJ, DaleyGQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci366: 2274-2285
doi: 10.1098/rstb.2011.0017
27 WuH, XuJ, PangZP, GeW, KimKJ, BlanchiB, ChenC, SudhofTC, SunYE (2007) Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci USA104: 13821-13826
doi: 10.1073/pnas.0706199104
28 YuanSH, MartinJ, EliaJ, FlippinJ, ParambanRI, HefferanMP, VidalJG, MuY, KillianRL, IsraelMA (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One6: e17540
doi: 10.1371/journal.pone.0017540
29 ZhangSC, WernigM, DuncanID, BrustleO, ThomsonJA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol19: 1129-1133
doi: 10.1038/nbt1201-1129
[1] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[2] Guoxing Zheng, Changying Jiang, Yulin Li, Dandan Yang, Youcai Ma, Bing Zhang, Xuan Li, Pei Zhang, Xiaoyu Hu, Xueqiang Zhao, Jie Du, Xin Lin. TMEM43-S358L mutation enhances NF-κBTGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy[J]. Protein Cell, 2019, 10(2): 104-119.
[3] Sun-Ku Chung,Shengyun Zhu,Yang Xu,Xuemei Fu. Functional analysis of the acetylation of human p53 in DNA damage responses[J]. Protein Cell, 2014, 5(7): 544-551.
[4] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[5] Qihui Wang, Xiaoning Mou, Henghua Cao, Qingzhang Meng, Yanni Ma, Pengcheng Han, Junjie Jiang, Hao Zhang, Yue Ma. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture[J]. Prot Cell, 2012, 3(1): 51-59.
[6] Qi Gu, Jie Hao, Xiao-yang Zhao, Wei Li, Lei Liu, Liu Wang, Zhong-hua Liu, Qi Zhou. Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions[J]. Prot Cell, 2012, 3(1): 71-79.
[7] Changhai Tian, Yongxiang Wang, Lijun Sun, Kangmu Ma, Jialin C. Zheng. Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts[J]. Prot Cell, 2011, 2(2): 128-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed