Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (4) : 286-298    https://doi.org/10.1007/s13238-013-2116-z      PMID: 23549614
RESEARCH ARTICLE
Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase
Wenjuan Duan1, Juefei Zhou1,2, Wei Li3, Teng Zhou1,4, Qianqian Chen1,4, Fuyu Yang1(), Taotao Wei1()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. Research Department of Bacterial Vaccine, Chengdu Institute of Biological Products Co. Ltd, Chengdu 610023, China; 3. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1102 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The activation and deactivation of Ca2+- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved F?rster resonance energy transfer (FRET), we determined the occurrence of Ca2+-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca2+ concentrations ([Ca2+]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca2+]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

Keywords plasma membrane calcium ATPase      neuronal nitric oxide synthase      calcium      nitric oxide      lipid raft      F?rster resonance energy transfer     
Corresponding Author(s): Yang Fuyu,Email:yangfy@sun5.ibp.ac.cn; Wei Taotao,Email:weitt@moon.ibp.ac.cn   
Issue Date: 01 April 2013
 Cite this article:   
Wenjuan Duan,Juefei Zhou,Wei Li, et al. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase[J]. Prot Cell, 2013, 4(4): 286-298.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-2116-z
https://academic.hep.com.cn/pac/EN/Y2013/V4/I4/286
1 Adamo, H.P., Filoteo, A.G., Enyedi, A., and Penniston, J.T. (1995). Mu-tants in the putative nucleotide-binding region of the plasma membrane Ca(2+)-pump. A reduction in activity due to slow dephosphorylation. J Biol Chem 270, 30111-30114 .
doi: 10.1074/jbc.270.50.30111
2 Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593-615 .
doi: 10.1042/0264-6021:3570593
3 Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., . (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757-767 .
doi: 10.1016/S0092-8674(00)81053-3
4 Brini, M. (2009). Plasma membrane Ca(2+)-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch 457, 657-664 .
doi: 10.1007/s00424-008-0505-6
5 Brini, M., and Carafoli, E. (2009). Calcium pumps in health and disease. Physiol Rev 89, 1341-1378 .
doi: 10.1152/physrev.00032.2008
6 Brown, D.A., and London, E. (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14, 111-136 .
doi: 10.1146/annurev.cellbio.14.1.111
7 Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D.A., and Stella, A.M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8, 766-775 .
doi: 10.1038/nrn2214
8 Carafoli, E. (2003). The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 4, 326-332 .
doi: 10.1038/nrm1073
9 Cartwright, E.J., Oceandy, D., and Neyses, L. (2009). Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457, 665-671 .
doi: 10.1007/s00424-008-0455-z
10 Ciruela, F. (2008). Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19, 338-343 .
doi: 10.1016/j.copbio.2008.06.003
11 Corradi, G.R., and Adamo, H.P. (2007). Intramolecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. J Biol Chem 282, 35440-35448 .
doi: 10.1074/jbc.M703377200
12 Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665 .
doi: 10.1126/science.275.5300.661
13 Falchetto, R., Vorherr, T., Brunner, J., and Carafoli, E. (1991). The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266, 2930-2936 .
14 Falchetto, R., Vorherr, T., and Carafoli, E. (1992). The calmodulinbinding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1, 1613-1621 .
doi: 10.1002/pro.5560011209
15 Fujimoto, T. (1993). Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120, 1147-1157 .
doi: 10.1083/jcb.120.5.1147
16 Guerini, D. (1998). The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292, 191-197 .
doi: 10.1007/s004410051050
17 Guix, F.X., Uribesalgo, I., Coma, M., and Munoz, F.J. (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76, 126-152 .
doi: 10.1016/j.pneurobio.2005.06.001
18 Hammes, A., Oberdorf-Maass, S., Rother, T., Nething, K., Gollnick, F., Linz, K.W., Meyer, R., Hu, K., Han, H., Gaudron, P., . (1998). Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83, 877-888 .
doi: 10.1161/01.RES.83.9.877
19 Holton, M., Mohamed, T.M., Oceandy, D., Wang, W., Lamas, S., Emerson, M., Neyses, L., and Armesilla, A.L. (2010). Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res 87, 440-448 .
doi: 10.1093/cvr/cvq077
20 Jiang, L., Fernandes, D., Mehta, N., Bean, J.L., Michaelis, M.L., and Zaidi, A. (2007). Partitioning of the plasma membrane Ca2+-ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 102, 378-388 .
doi: 10.1111/j.1471-4159.2007.04480.x
21 Kim, E., DeMarco, S.J., Marfatia, S.M., Chishti, A.H., Sheng, M., and Strehler, E.E. (1998). Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 273, 1591-1595 .
doi: 10.1074/jbc.273.3.1591
22 Kim, W.K., Choi, Y.B., Rayudu, P.V., Das, P., Asaad, W., Arnelle, D.R., Stamler, J.S., and Lipton, S.A. (1999). Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24, 461-469 .
doi: 10.1016/S0896-6273(00)80859-4
23 Kobe, B., and Kemp, B.E. (1999). Active site-directed protein regulation. Nature 402, 373-376 .
doi: 10.1038/46478
24 Kojima, H., Nakatsubo, N., Kikuchi, K., Urano, Y., Higuchi, T., Tanaka, J., Kudo, Y., and Nagano, T. (1998). Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA. Neuroreport 9, 3345-3348 .
doi: 10.1097/00001756-199810260-00001
25 Kruger, W.A., Yun, C.C., Monteith, G.R., and Poronnik, P. (2009). Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 284, 1820-1830 .
doi: 10.1074/jbc.M804590200
26 Loura, L.M., and Prieto, M.FRET in Membrane Biophysics: An Overview. (2011). Front Physiol 2, 82.
doi: 10.3389/fphys.2011.00082
27 Mamic, T.M., Holman, N.A., Roberts-Thomson, S.J., and Monteith, G.R. (2000). PMCA1 mRNA expression in rat aortic myocytes: a real-time RT-PCR study. Biochem Biophys Res Commun 276, 1024-1027 .
doi: 10.1006/bbrc.2000.3578
28 Miyawaki, A.Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. (2011) Annu Rev Biochem 80, 357-373 .
doi: 10.1146/annurev-biochem-072909-094736
29 Mohamed, T.M., Oceandy, D., Prehar, S., Alatwi, N., Hegab, Z., Baudoin, F.M., Pickard, A., Zaki, A.O., Nadif, R., Cartwright, E.J., . (2009). Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem 284, 12091-12098 .
doi: 10.1074/jbc.M809112200
30 Mohamed, T.M., Oceandy, D., Zi, M., Prehar, S., Alatwi, N., Wang, Y., Shaheen, M.A., Abou-Leisa, R., Schelcher, C., Hegab, Z., . (2011). Plasma membrane calcium pump (PMCA4)-neuronal nitricoxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286, 41520-41529 .
doi: 10.1074/jbc.M111.290411
31 Moncada, S., and Bolanos, J.P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97, 1676-1689 .
doi: 10.1111/j.1471-4159.2006.03988.x
32 Moro, M.A., Cardenas, A., Hurtado, O., Leza, J.C., and Lizasoain, I. (2004). Role of nitric oxide after brain ischaemia. Cell Calcium 36, 265-275 .
doi: 10.1016/j.ceca.2004.02.011
33 Oceandy, D., Mohamed, T.M., Cartwright, E.J., and Neyses, L. (2010). Local signals with global impacts and clinical implications: lessons from the plasma membrane calcium pump (PMCA4). Biochim Biophys Acta 1813, 974-978 .
doi: 10.1016/j.bbamcr.2010.12.007
34 Oceandy, D., Stanley, P.J., Cartwright, E.J., and Neyses, L. (2007). The regulatory function of plasma-membrane Ca(2+)-ATPase (PMCA) in the heart. Biochem Soc Trans 35, 927-930 .
doi: 10.1042/BST0350927
35 Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87, 315-424 .
doi: 10.1152/physrev.00029.2006
36 Parton, R.G. (2001). Cell biology. Life without caveolae. Science 293, 2404-2405 .
doi: 10.1126/science.1065677
37 Piehler, J. (2005). New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15, 4-14 .
doi: 10.1016/j.sbi.2005.01.008
38 Sagami, I., Daff, S., and Shimizu, T. (2001). Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis. J Biol Chem 276, 30036-30042 .
doi: 10.1074/jbc.M104123200
39 Schuh, K., Uldrijan, S., Gambaryan, S., Roethlein, N., and Neyses, L. (2003). Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278, 9778-9783 .
doi: 10.1074/jbc.M212507200
40 Schuh, K., Uldrijan, S., Telkamp, M., Rothlein, N., and Neyses, L. (2001). The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155, 201-205 .
doi: 10.1083/jcb.200104131
41 Sepulveda, M.R., Berrocal-Carrillo, M., Gasset, M., and Mata, A.M. (2006). The plasma membrane Ca2+-ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. J Biol Chem 281, 447-453 .
doi: 10.1074/jbc.M506950200
42 Sgambato-Faure, V., Xiong, Y., Berke, J.D., Hyman, S.E., and Strehler, E.E. (2006). The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 343, 630-637 .
doi: 10.1016/j.bbrc.2006.03.020
43 Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572 .
doi: 10.1038/42408
44 Stamler, J.S., and Meissner, G. (2001). Physiology of nitric oxide in skeletal muscle. Physiol Rev 81, 209-237 .
45 Strehler, E.E., and Zacharias, D.A. (2001). Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81, 21-50 .
46 Tachibana, T., Ogura, H., Tokunaga, A., Dai, Y., Yamanaka, H., Seino, D., and Noguchi, K. (2004). Plasma membrane calcium ATPase expression in the rat spinal cord. Brain Res Mol Brain Res 131, 26-32 .
doi: 10.1016/j.molbrainres.2004.08.001
47 Torreilles, F., Salman-Tabcheh, S., Guerin, M., and Torreilles, J. (1999). Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev 30, 153-163 .
doi: 10.1016/S0165-0173(99)00014-4
48 Tran, M.H., Yamada, K., Nakajima, A., Mizuno, M., He, J., Kamei, H., and Nabeshima, T. (2003). Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction. Mol Psychiatry 8, 407-412 .
doi: 10.1038/sj.mp.4001240
49 Williams, J.C., Armesilla, A.L., Mohamed, T.M., Hagarty, C.L., McIntyre, F.H., Schomburg, S., Zaki, A.O., Oceandy, D., Cartwright, E.J., Buch, M.H., . (2006). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281, 23341-23348 .
doi: 10.1074/jbc.M513341200
50 Youvan, D.C., Silva, C.M., Bylina, E.J., Coleman, W.J., Dilworth, M.R., and Yang, M.M. (1997). Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on Nickel chelating beads. Biotechnology ia 3, 1-18 .
51 Zhang, J., Xiao, P., and Zhang, X. (2009). Phosphatidylserine externalization in caveolae inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in ECV304. Cell Calcium 45, 177-184 .
doi: 10.1016/j.ceca.2008.09.002
52 Zhou, L., and Zhu, D.Y. (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20, 223-230 .
doi: 10.1016/j.niox.2009.03.001
53 Zhou, X., and He, P. (2011). Improved measurements of intracellular nitric oxide in intact microvessels using 4,5-diaminofluorescein diacetate. Am J Physiol Heart Circ Physiol 301, H108-114 .
doi: 10.1152/ajpheart.00195.2011
[1] Jianwei Liu, Mengdi Wang, Le Sun, Na Clara Pan, Changjiang Zhang, Junjing Zhang, Zhentao Zuo, Sheng He, Qian Wu, Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1[J]. Protein Cell, 2020, 11(6): 417-432.
[2] Bing Huang,Yingchen Ling,Jiangguo Lin,Xin Du,Ying Fang,Jianhua Wu. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow[J]. Protein Cell, 2017, 8(2): 103-113.
[3] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[4] Yajin Liao,Yumin Hao,Hong Chen,Qing He,Zengqiang Yuan,Jinbo Cheng. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein Cell, 2015, 6(6): 434-442.
[5] Kuo Liang,Wen Du,Jingze Lu,Fei Li,Lu Yang,Yanhong Xue,Bertil Hille,Liangyi Chen. Alterations of the Ca2+ signaling pathway in pancreatic beta-cells isolated from db/db mice[J]. Protein Cell, 2014, 5(10): 783-794.
[6] Yingxiao Chen, Xianqiang Song, Sheng Ye, Lin Miao, Yun Zhu, Rong-Guang Zhang, Guangju Ji. Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement[J]. Prot Cell, 2013, 4(4): 299-309.
[7] Hua Cheng, Tong Ren, Shao-cong Sun. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax[J]. Prot Cell, 2012, 3(8): 581-589.
[8] Kalpana Mujoo, Lubov E. Nikonoff, Vladislav G Sharin, Nathan S. Bryan, Alexander Y. Kots, Ferid Murad. Curcumin induces differentiation of embryonic stem cells through possible modulation of nitric oxide-cyclic GMP pathway[J]. Prot Cell, 2012, 3(7): 535-544.
[9] Junbing Wu, Shengyi Peng, Rong Wu, Yumin Hao, Guangju Ji, Zengqiang Yuan. Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression[J]. Prot Cell, 2012, 3(6): 470-480.
[10] Juan Li, Bin Liu, Xiaofei Gao, Zhixing Ma, Tianyi CaoSong, Yan-ai Mei, Yufang Zheng. Overexpression of sigma-1 receptor inhibits ADAM10 and ADAM17 mediated shedding in vitro[J]. Prot Cell, 2012, 3(2): 153-159.
[11] Ashapurna Sarma, Weidong Yang. Calcium regulation of nucleocytoplasmic transport[J]. Prot Cell, 2011, 2(4): 291-302.
[12] Congyan Pan, Ji Zheng, Yanyun Wu, Yingxiao Chen, Likun Wang, Zhansong Zhou, Wenxuan Yin, Guangju Ji. ERp44 C160S/C212S mutants regulate IP3R1 channel activity[J]. Prot Cell, 2011, 2(12): 990-996.
[13] Maxim S. Titushin, Yingang Feng, John Lee, Eugene S. Vysotski, Zhi-Jie Liu. Protein-protein complexation in bioluminescence[J]. Prot Cell, 2011, 2(12): 957-972.
[14] Xiaoyan Zhao, Hai Pang, Shenglan Wang, Keqian Yang, Weihong Zhou, Mark Bartlam, . Structural basis for prokaryotic calcium- mediated regulation by a Streptomyces coelicolor calcium binding protein[J]. Protein Cell, 2010, 1(8): 771-779.
[15] Dachuan Huang, Sylvia Lim, Rong Yuan Ray Chua, Hong Shi, Siew Heng Wong, Mah Lee Ng. A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells[J]. Protein Cell, 2010, 1(3): 291-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed