Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (7) : 485-492    https://doi.org/10.1007/s13238-013-3036-7      PMID: 23744340
REVIEW
UV-B-induced photomorphogenesis in Arabidopsis
Jigang Li1,2, Li Yang1,2, Dan Jin2,3, Cynthia D. Nezames2, William Terzaghi2,4, Xing Wang Deng1,2()
1. Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; 2. Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; 3. Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing 400716, China; 4. 4Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
 Download: PDF(213 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ultraviolet-B (UV-B) is a relatively minor component of sunlight, but can induce stress-related physiological processes or UV-B-specific photomorphogenic responses in plants. In the last decade, significant progress has been made in understanding the UV-B photomorphogenic pathway, including identification of the key components in the pathway, molecular characterization of UV-B photoreceptor and perception mechanism, and elucidation of the signal transduction mechanisms from the photoactivated UV-B receptor to downstream gene expression. This review summarizes the key players identified to date in the UV-B photomorphogenic pathway and their roles in mediating UV-B signal transduction.

Keywords UV-B      photomorphogenesis      signal transduction      gene expression     
Corresponding Author(s): Deng Xing Wang,Email:xingwang.deng@yale.edu   
Issue Date: 01 July 2013
 Cite this article:   
Jigang Li,Li Yang,William Terzaghi, et al. UV-B-induced photomorphogenesis in Arabidopsis[J]. Prot Cell, 2013, 4(7): 485-492.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3036-7
https://academic.hep.com.cn/pac/EN/Y2013/V4/I7/485
1 Allen, T., Koustenis, A., Theodorou, G., Somers, D.E., Kay, S.A., Whitelam, G.C., and Devlin, P.F. (2006). Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18, 2506-2516 .
doi: 10.1105/tpc.105.037358
2 Brosche, M., Schuler, M.A., Kalbina, I., Connor, L., and Strid, A. (2002). Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem Photobiol Sci 1, 656-664 .
3 Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Kliebenstein, D.J., and Jenkins, G.I. (2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102, 18225-18230 .
doi: 10.1073/pnas.0507187102
4 Brown, B.A., and Jenkins, G.I. (2008). UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146, 576-588 .
doi: 10.1104/pp.107.108456
5 Casati, P., Stapleton, A.E., Blum, J.E., and Walbot, V. (2006). Genomewide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. Plant J 46, 613-627 .
doi: 10.1111/j.1365-313X.2006.02721.x
6 Casati, P., and Walbot, V. (2003). Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132, 1739-1754 .
doi: 10.1104/pp.103.022871
7 Casati, P., and Walbot, V. (2004). Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5, R16.
doi: 10.1186/gb-2004-5-3-r16
8 Chen, F., Shi, X., Chen, L., Dai, M., Zhou, Z., Shen, Y., Li, J., Li, G., Wei, N., and Deng, X.W. (2012). Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. Plant Cell 24, 1907-1920 .
doi: 10.1105/tpc.112.097733
9 Chen, H., Huang, X., Gusmaroli, G., Terzaghi, W., Lau, O.S., Yanagawa, Y., Zhang, Y., Li, J., Lee, J.H., Zhu, D., . (2010). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22, 108-123 .
doi: 10.1105/tpc.109.065490
10 Christie, J.M., Arvai, A.S., Baxter, K.J., Heilmann, M., Pratt, A.J., O’Hara, A., Kelly, S.M., Hothorn, M., Smith, B.O., Hitomi, K., . (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335, 1492-1496 .
doi: 10.1126/science.1218091
11 Cloix, C., and Jenkins, G.I. (2008). Interaction of the Arabidopsis UVB- specific signaling component UVR8 with chromatin. Mol Plant 1, 118-128 .
doi: 10.1093/mp/ssm012
12 Cloix, C., Kaiserli, E., Heilmann, M., Baxter, K.J., Brown, B.A., O’Hara, A., Smith, B.O., Christie, J.M., and Jenkins, G.I. (2012). C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci U S A 109, 16366-16370 .
doi: 10.1073/pnas.1210898109
13 Deng, X.W., Caspar, T., and Quail, P.H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5, 1172-1182 .
doi: 10.1101/gad.5.7.1172
14 Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801 .
doi: 10.1016/0092-8674(92)90555-Q
15 Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J., . (2009). Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28, 591-601 .
doi: 10.1038/emboj.2009.4
16 Feher, B., Kozma-Bognar, L., Kevei, E., Hajdu, A., Binkert, M., Davis, S.J., Schafer, E., Ulm, R., and Nagy, F. (2011). Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J 67, 37-48 .
doi: 10.1111/j.1365-313X.2011.04573.x
17 Genoud, T., Schweizer, F., Tscheuschler, A., Debrieux, D., Casal, J.J., Schafer, E., Hiltbrunner, A., and Fankhauser, C. (2008). FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet 4, e1000143.
doi: 10.1371/journal.pgen.1000143
18 Gonzalez Besteiro, M.A., Bartels, S., Albert, A., and Ulm, R. (2011). Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J 68, 727-737 .
doi: 10.1111/j.1365-313X.2011.04725.x
19 Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H.K., and Ulm, R. (2010). Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 107, 20132-20137 .
doi: 10.1073/pnas.0914532107
20 Heijde, M., and Ulm, R. (2012). UV-B photoreceptor-mediated signaling in plants. Trends Plant Sci 17, 230-237 .
doi: 10.1016/j.tplants.2012.01.007
21 Heijde, M., and Ulm, R. (2013). Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110, 1113-1118 .
doi: 10.1073/pnas.1214237110
22 Heilmann, M., and Jenkins, G.I. (2013).Rapid reversion from monomer to dimer regenerates the ultraviolet-B photoreceptor UV RESISTANCE LOCUS8 in intact Arabidopsis plants. Plant Physiol 161, 547-555 .
doi: 10.1104/pp.112.206805
23 Hiltbrunner, A., Tscheuschler, A., Viczian, A., Kunkel, T., Kircher, S., and Schafer, E. (2006). FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol 47, 1023-1034 .
doi: 10.1093/pcp/pcj087
24 Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Schafer, E. (2005). Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15, 2125-2130 .
doi: 10.1016/j.cub.2005.10.042
25 Hoecker, U., and Quail, P.H. (2001). The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 276, 38173-38178 .
26 Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10, 19-33 .
27 Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16, 1247-1259 .
doi: 10.1101/gad.969702
28 Huang, X., Ouyang, X., Yang, P., Lau, O.S., Li, G., Li, J., Chen, H., and Deng, X.W. (2012). Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 24, 4590-4606 .
doi: 10.1105/tpc.112.103994
29 Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13, 2017-2027 .
doi: 10.1101/gad.13.15.2017
30 Jang, I.C., Henriques, R., Seo, H.S., Nagatani, A., and Chua, N.H. (2010). Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22, 2370-2383 .
doi: 10.1105/tpc.109.072520
31 Jenkins, G.I. (2009). Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60, 407-431 .
doi: 10.1146/annurev.arplant.59.032607.092953
32 Jiang, L., Wang, Y., Bjorn, L.O., and Li, S. (2009). Arabidopsis RADICAL- INDUCED CELL DEATH1 is involved in UV-B signaling. Photochem Photobiol Sci 8, 838-846 .
doi: 10.1039/b901187k
33 Jiang, L., Wang, Y., Li, Q.F., Bjorn, L.O., H, J.X., and Li, S. (2012). Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res 22, 1046-1057 .
doi: 10.1038/cr.2012.34
34 Kaiserli, E., and Jenkins, G.I. (2007). UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19, 2662-2673 .
doi: 10.1105/tpc.107.053330
35 Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50, 347-363 .
doi: 10.1111/j.1365-313X.2007.03052.x
36 Kim B .C., Tennessen D .J., Last R .L. (1998). UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J 15, 667-674 .
doi: 10.1046/j.1365-313x.1998.00246.x
37 Kliebenstein, D.J., Lim, J.E., Landry, L.G., and Last, R.L. (2002). Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130, 234-243 .
doi: 10.1104/pp.005041
38 Koornneef, M., Rolff, E., and Spruit, C.J.P. (1980). Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh Z Pflanzenphysiol 100, 147-160 .
39 Lau, O.S., and Deng, X.W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17, 584-593 .
doi: 10.1016/j.tplants.2012.05.004
40 Laubinger, S., Fittinghoff, K., and Hoecker, U. (2004). The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16, 2293-2306 .
doi: 10.1105/tpc.104.024216
41 Laubinger, S., and Hoecker, U. (2003). The SPA1-like proteins SPA3 SPA4 repress photomorphogenesis in the light. Plant J 35, 373-385 .
doi: 10.1046/j.1365-313X.2003.01813.x
42 Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749 .
doi: 10.1105/tpc.106.047688
43 Lee, J.H., Terzaghi, W., Gusmaroli, G., Charron, J.B., Yoon, H.J., Chen, H., He, Y.J., Xiong, Y., and Deng, X.W. (2008). Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20, 152-167 .
doi: 10.1105/tpc.107.055418
44 Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X.Y., Li, J., Lau, O.S., Ouyang, X., Dai, M., Wan, J., . (2011). Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616-622 .
doi: 10.1038/ncb2219
45 Li, J., Li, G., Gao, S., Martinez, C., He, G., Zhou, Z., Huang, X., Lee, J.H., Zhang, H., Shen, Y., . (2010). Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22, 3634-3649 .
doi: 10.1105/tpc.110.075788
46 Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302-1305 .
doi: 10.1126/science.1146281
47 Ma, L., Gao, Y., Qu, L., Chen, Z., Li, J., Zhao, H., and Deng, X.W. (2002). Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14, 2383-2398 .
doi: 10.1105/tpc.004416
48 Martinez-Garcia, J.F., Huq, E., and Quail, P.H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859-863 .
doi: 10.1126/science.288.5467.859
49 Morales L.O., Brosché M., Vainonen J., Jenkins G.I., Wargent J.J., Sipari N., Strid ?., Lindfors A.V., Tegelberg R., Aphalo P.J. (2013). Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation. Plant Physiol 161, 744-759 .
doi: 10.1104/pp.112.211375
50 O’Hara, A., and Jenkins, G.I. (2012). In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8. Plant Cell 24, 3755-3766 .
doi: 10.1105/tpc.112.101451
51 Oravecz, A., Baumann, A., Mate, Z., Brzezinska, A., Molinier, J., Oakeley, E.J., Adam, E., Schafer, E., Nagy, F., and Ulm, R. (2006). CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975-1990 .
doi: 10.1105/tpc.105.040097
52 Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466 .
doi: 10.1038/35013076
53 Ouyang, X., Li, J., Li, G., Li, B., Chen, B., Shen, H., Huang, X., Mo, X., Wan, X., Lin, R., . (2011). Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23, 2514-2535 .
doi: 10.1105/tpc.111.085126
54 Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983-2995 .
doi: 10.1101/gad.11.22.2983
55 Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., Schafer, E., Nagy, F., Jenkins, G.I., . (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103-106 .
doi: 10.1126/science.1200660
56 Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., and Deng, X.W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17, 2642-2647 .
doi: 10.1101/gad.1122903
57 Saijo, Y., Zhu, D., Li, J., Rubio, V., Zhou, Z., Shen, Y., Hoecker, U., Wang, H., and Deng, X.W. (2008). Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell 31, 607-613 .
doi: 10.1016/j.molcel.2008.08.003
58 Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., and Chua, N.H. (2004). Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18, 617-622 .
doi: 10.1101/gad.1187804
59 Seo, H.S., Yang, J.Y., Ishikawa, M., Bolle, C., Ballesteros, M.L., and Chua, N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999 .
doi: 10.1038/nature01696
60 Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., and Lin, C. (2002). Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417, 763-767 .
doi: 10.1038/nature00815
61 Stirnberg, P., Zhao, S., Williamson, L., Ward, S., and Leyser, O. (2012). FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J 71, 907-920 .
doi: 10.1111/j.1365-313X.2012.05038.x
62 Subramanian, C., Kim, B.H., Lyssenko, N.N., Xu, X., Johnson, C.H., and von Arnim, A.G. (2004). The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proc Natl Acad Sci U S A 101, 6798-6802 .
doi: 10.1073/pnas.0307964101
63 Tang, W., Wang, W., Chen, D., Ji, Q., Jing, Y., Wang, H., and Lin, R. (2012). Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 24, 1984-2000 .
doi: 10.1105/tpc.112.097022
64 Ulm, R., Baumann, A., Oravecz, A., Mate, Z., Adam, E., Oakeley, E.J., Schafer, E., and Nagy, F. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A 101, 1397-1402 .
doi: 10.1073/pnas.0308044100
65 Ulm, R., and Nagy, F. (2005). Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8, 477-482 .
doi: 10.1016/j.pbi.2005.07.004
66 van Nocker, S., and Ludwig, P. (2003). The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4, 50.
doi: 10.1186/1471-2164-4-50
67 von Arnim, A.G., and Deng, X.W. (1994). Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79, 1035-1045 .
doi: 10.1016/0092-8674(94)90034-5
68 Wang, H., and Deng, X.W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21, 1339-1349 .
doi: 10.1093/emboj/21.6.1339
69 Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757-768 .
70 Wu, D., Hu, Q., Yan, Z., Chen, W., Yan, C., Huang, X., Zhang, J., Yang, P., Deng, H., Wang, J., . (2012). Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214-219 .
doi: 10.1038/nature10931
71 Yang, S.W., Jang, I.C., Henriques, R., and Chua, N.H. (2009). FARRED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 21, 1341-1359 .
doi: 10.1105/tpc.109.067215
72 Yi, C., and Deng, X.W. (2005). COP1- from plant photomorphogenesis to mammalian tumorigenesis. rends Cell Biol 15, 618-625 .
doi: 10.1016/j.tcb.2005.09.007
73 Zhang, H., He, H., Wang, X., Wang, X., Yang, X., Li, L., and Deng, X.W. (2011). Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and posttranscriptional regulation. Plant J 65, 346-358 .
doi: 10.1111/j.1365-313X.2010.04426.x
74 Zhu, D., Maier, A., Lee, J.H., Laubinger, S., Saijo, Y., Wang, H., Qu, L.J., Hoecker, U., and Deng, X.W. (2008). Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20, 2307-2323 .
doi: 10.1105/tpc.107.056580
[1] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[2] Yi Feng,Hai-yan Ying,Ying Qu,Xiao-bo Cai,Ming-yi Xu,Lun-gen Lu. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells[J]. Protein Cell, 2016, 7(9): 662-672.
[3] Liping Deng,Ruotong Ren,Jun Wu,Keiichiro Suzuki,Juan Carlos Izpisua Belmote,Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste[J]. Protein Cell, 2015, 6(3): 157-159.
[4] Ya-Feng Li, Ying Jing, Jielu Hao, Nathan C Frankfort, Xiaoshuang Zhou, Bing Shen, Xinyan Liu, Lihua Wang, Rongshan Li. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Prot Cell, 2013, 4(11): 813-819.
[5] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
[6] Yang Zhao, Kim K.C. Li, King Pan Ng, Chi Ho Ng, Kevin A.W. Lee. The RNA Pol II sub-complex hsRpb4/7 is required for viability of multiple human cell lines[J]. Prot Cell, 2012, 3(11): 846-854.
[7] Jun Ma. Transcriptional activators and activation mechanisms[J]. Prot Cell, 2011, 2(11): 879-888.
[8] Zhongfeng Wang, Baojie Li. Mdm2 links genotoxic stress and metabolism to p53[J]. Prot Cell, 2010, 1(12): 1063-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed