Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (10) : 771-781    https://doi.org/10.1007/s13238-013-3053-6      PMID: 24104392
RESEARCH ARTICLE
Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1
Jinhua Xu1,2, Xiaochao Wei1,2, Limin Yan3, Dan Liu1,2, Yuanyuan Ma3, Yu Guo2,4, Chune Peng1,2, Honggang Zhou2,4, Cheng Yang2,4, Zhiyong Lou3(), W enqing Shui1,2()
1. College of Life Sciences and Tianjin State Laboratory of Protein Science, Nankai University, Tianjin 300071, China; 2. High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; 3. Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, China; 4. College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
 Download: PDF(916 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specifi c phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specifi city kinase for the fi rst time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most signifi cantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specifi c phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specifi city.

Keywords phosphorylation      BIK1      receptor-like cytoplasmic kinase      quantitative mass spectrometry     
Corresponding Author(s): Lou Zhiyong,Email:louzy@xtal.tsinghua.edu.cn; Shui W enqing,Email:angelshui@nankai.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Jinhua Xu,Xiaochao Wei,Limin Yan, et al. Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1[J]. Prot Cell, 2013, 4(10): 771-781.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3053-6
https://academic.hep.com.cn/pac/EN/Y2013/V4/I10/771
1 Antolin-Llovera, M., Ried, M.K., Binder, A., and Parniske, M. (2012). Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50, 451-473 .
doi: 10.1146/annurev-phyto-081211-173002
2 Boersema, P.J., Foong, L.Y., Ding, V.M., Lemeer, S., van Breukelen, B., Philp, R., Boekhorst, J., Snel, B., den Hertog, J., Choo, A.B., . (2010). In-depth qualitative and quantitative profi ling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffi nity purifi cation and stable isotope dimethyl labeling. Mol Cell Proteomics 9, 84-99 .
doi: 10.1074/mcp.M900291-MCP200
3 Bol ler, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406 .
doi: 10.1146/annurev.arplant.57.032905.105346
4 Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742-744 .
doi: 10.1126/science.1171647
5 Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A fl agellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500 .
doi: 10.1038/nature05999
6 Greeff, C., Roux, M., Mundy, J., and Petersen, M. (2012). Rec eptorlike kinase complexes in plant innate immunity. Front Plant Sci 3, 209.
7 Gunawardena, H.P., Huang, Y., Kenjale, R., Wang, H., Xie, L., and Chen, X. (2011). Unambiguous characterization of site-specific phosphorylation of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) in Toll-like receptor 4 (TLR4)-mediated signaling. J Biol Chem 286, 10897-10910 .
doi: 10.1074/jbc.M110.168179
8 Hoppe, E., Berne, P.F., Stock, D., Rasmussen, J.S., Moller, N.P., Ullrich, A., and Huber, R. (1994). Expression, purifi cation and crystallization of human phosphotyrosine phosphatase 1B. Eur J Biochem 223, 1069-1077 .
doi: 10.1111/j.1432-1033.1994.tb19085.x
9 Johnson, L.N., Noble, M.E., and Owen, D.J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85, 149-158 .
doi: 10.1016/S0092-8674(00)81092-2
10 Kim, D.S., and Hwang, B.K. (2011). The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J 66, 642-655 .
doi: 10.1111/j.1365-313X.2011.04525.x
11 Laluk, K., Luo, H., Chai, M., Dhawan, R., Lai, Z., and Mengiste, T. (2011). Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23, 2831-2849 .
doi: 10.1105/tpc.111.087122
12 Lowe, E.D., Noble, M.E., Skamnaki, V.T., Oikonomakos, N.G., Owen, D.J., and Johnson, L.N.(1997). The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 16, 6646-6658 .
doi: 10.1093/emboj/16.22.6646
13 Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010a). A receptor-like cytoplasmic kinase, BIK1, associates with a fl agellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107, 496-501 .
doi: 10.1073/pnas.0909705107
14 Lu, D., Wu, S., He, P., and Shan, L. (2010b). Phosphorylation of receptor-like cytoplasmic kinases by bacterial fl agellin. Plant Signal Behav 5 . Nol en, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15, 661-675 .
doi: 10.1016/j.molcel.2004.08.024
15 Oh, M.H., Clouse, S.D., and Huber, S.C. (2012). Tyr osine phosphorylation of the BRI1 receptor kinase occurs via a post-translational modifi cation and is activated by the juxtamembrane domain. Front Plant Sci 3, 175.
doi: 10.3389/fpls.2012.00175
16 Oh, M.H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci USA 106, 658-663 .
doi: 10.1073/pnas.0810249106
17 Oh, M.H., Wang, X., Wu, X., Zhao, Y., Clouse, S.D., and Huber, S.C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci USA 107, 17827-17832 .
doi: 10.1073/pnas.0915064107
18 Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7, e1002046.
19 Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98, 10763-10768 .
doi: 10.1073/pnas.181141598
20 Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530-543 .
doi: 10.1104/pp.103.021964
21 Soderblom, E.J., Philipp, M., Thompson, J.W., Caron, M.G., and Moseley, M.A. (2011). Quantitative label-free phosphoproteomics strategy for multifaceted experimental designs. Anal Chem 83, 3758-3764 .
doi: 10.1021/ac200213b
22 Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257-273 .
doi: 10.1105/tpc.105.035576
23 Voolstra, O., Beck, K., Oberegelsbacher, C., Pfannstiel, J., and Huber, A. (2010). Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 285, 14275-14284 .
doi: 10.1074/jbc.M110.102053
24 Wang, X., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D. (2005). Ide ntifi cation and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17, 1685-1703 .
doi: 10.1105/tpc.105.031393
25 Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15, 220-235 .
doi: 10.1016/j.devcel.2008.06.011
26 Wang, Z., Liu, J., Sudom, A., Ayres, M., Li, S., Wesche, H., Powers, J.P., and Walker, N.P. (2006). Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure 14, 1835-1844 .
doi: 10.1016/j.str.2006.11.001
27 Yan, L., Ma, Y., Liu, D., Wei, X., Sun, Y., Chen, X., Zhao, H., Zhou, J., Wang, Z., Shui, W., . (2012). Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Res 22, 1304-1308 .
doi: 10.1038/cr.2012.74
28 Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., . (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290-301 .
doi: 10.1016/j.chom.2010.03.007
29 Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783-793 .
doi: 10.1093/mp/ssq035
[1] Mi Li, Hong-Bing Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response[J]. Protein Cell, 2020, 11(8): 584-599.
[2] Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594.
[3] Xing Guo, Xiuliang Huang, Mark J. Chen. Reversible phosphorylation of the 26S proteasome[J]. Protein Cell, 2017, 8(4): 255-272.
[4] Mengqi Lv,Chongyuan Wang,Fudong Li,Junhui Peng,Bin Wen,Qingguo Gong,Yunyu Shi,Yajun Tang. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38.
[5] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[6] Zhixiu Yang,Qiang Guo,Simon Goto,Yuling Chen,Ningning Li,Kaige Yan,Yixiao Zhang,Akira Muto,Haiteng Deng,Hyouta Himeno,Jianlin Lei,Ning Gao. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence[J]. Protein Cell, 2014, 5(5): 394-407.
[7] Hui Yang,Hongbing Wang. Signaling control of the constitutive androstane receptor (CAR)[J]. Protein Cell, 2014, 5(2): 113-123.
[8] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[9] Jiangtao Guo, Xuepeng Wei, Mei Li, Xiaowei Pan, Wenrui Chang, Zhenfeng Liu. Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae[J]. Prot Cell, 2013, 4(8): 607-619.
[10] Miao Feng, Zhanyu Ding, Liang Xu, Liangliang Kong, Wenjia Wang, Shi Jiao, Zhubing Shi, Mark I. Greene, Yao Cong, Zhaocai Zhou. Structural and biochemical studies of RIG-I antiviral signaling[J]. Prot Cell, 2013, 4(2): 142-154.
[11] Shen Niu, Zhen Wang, Dongya Ge, Guoqing Zhang, Yixue Li. Prediction of functional phosphorylation sites by incorporating evolutionary information[J]. Prot Cell, 2012, 3(9): 675-690.
[12] Peter Roepstorff. Mass spectrometry based proteomics, background, status and future needs[J]. Prot Cell, 2012, 3(9): 641-647.
[13] Tomohiko Tsuge, Suchithra Menon, Yingchun Tong, Ning Wei. CSN1 inhibits c-Jun phosphorylation and down-regulates ectopic expression of JNK1[J]. Prot Cell, 2011, 2(5): 423-432.
[14] Qinghang Meng, Ying Xia. c-Jun, at the crossroad of the signaling network[J]. Prot Cell, 2011, 2(11): 889-898.
[15] Xuelian Luo. Snapshots of a hybrid transcription factor in the Hippo pathway[J]. Prot Cell, 2010, 1(9): 811-819.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed